

SHIRE VALLEY TRANSFORMATION PROGRAM SVTP-GEOTECHNICAL REPORT

Detailed Design of Main Canal 3, Secondary Canals and Remaining Works in Phase I Area

KOREA RURAL COMMUNITY CORPORATION

IN JOINT VENTURE WITH DASAN CONSULTANTS CO. LTD., ISAN CORPORATION

AND

EMD CONSULTING ENGINEERING

9th JUNE 2022

CHAPTER 1. GEOTECHNICAL SURVEY

1.1. Introduction

The geotechnical investigation was carried out in order to facilitate the detailed design of the SVTP-1 (Shire Valley Transformation Program-1) by supply the basic information about subsurface conditions and geotechnical properties.

The spatial extent of investigation centered on the proposed MC3 and Secondary Canals/Pipelines route.

In the report, "BH" means the borehole drilled in Feasibility Study, and "DBH" means the borehole drilled in Detailed Design of MC1 and part of MC2 stage.DBH-64 and DBH-65 was done for f Main Canal 3. "SBH" means the borehole drilled in this task (2nd Detailed Designing of 1st Stage).

The duties of a geotechnical expert in the detailed design are as follows:

- Review of existing data
- Execution of geotechnical investigation
- Writing activity report
- Provide the geotechnical investigation result for detailed design

1.2. Review of Previous Geotechnical Investigation

1.2.1. Previous Tasks

During TFS, the geotechnical investigation was conducted from January 2016 to March 2016. For Detailed design of MC1 and part t of MC2, the Geotechnical investigation was carried out from November 2017 to January 2018. The work scope of D.D was on Main Canal 1 and Main Canal 2 considering the changes of canal route. The works include drilling works, soil sampling, in-situ test and laboratory test. The tasks are shown in Table 3.2-1.

[Table 1.2-1] Previous Geotechnical Investigations

ltems	Unit		Quantity		Remarks
items	Onit	TFS	D.D	Total	Remains
1. Drilling Boreholes					BS 5903(1990)
1) Percussive drilling	No	19	11	30	
2) Auger boring	No	9	39	48	
3) Borrow Pit & Quarry Site	No	12	-	12	
2. Permeability Pits	No	20	7	27	
3. Ground surface survey	Ls	1	1	2	Including quarry survey
4. Laboratory Test					BS 1337(1991)

C ISAN

1) sieve analysis	No	89	58	147	ASTM D 422
2) Atterberg limits	No	89	58	147	ASTM D 4318
3) UU Tri-axial test	No	-	3	3	ASTM D 2850
4) Specific gravity	No	89	58	147	ASTM D 854
5) Natural moisture content	No	40	-	40	ASTM D 2216
6) Direct shear test	No	-	4	4	ASTM D 3080
7) Permeability Test	No	20	7	27	

* TFS: Technical Feasibility Study

* D.D: Detailed Design for Main Canal (MC-1, MC-2)

1.2.2. Summary of Results

The project area is partly within the Shire Highlands and mostly within the Lower Shire Valley Plains. From the intake site, soil characteristics reveal the existence of charnockitic suite: banded pyroxene granulites and gneisses, and hyperthene-granite of precabrian palaezoic late origin. Alluvium of quarternary origin occurs from the foot of the escarpment to Kamuzu Bridge to Majete Bangula.

Rock layers were found at MC-1(BH-A, BH-4, BH-9, BH-13, BH-14, BH-15, DBH-4, DBH-5, DBH-6), situated 2-7m below the ground surface. The earth layer in each borehole is 2m thick from the surface and comprises sand, silt, and clay.

The soils excavated at project area fall within the group of Loess Loam, with coefficient of permeability in the range of 10-2 to 10-4.

Based on TFS & D.D. data, Main Canal mainly comprises of sandy soils which will likely result in high seepage losses if an unlined canal is opted. Additionally, as another option, it was recommended to use concrete pipes buried in the ground to be used as a water conveyance system so as to reduce evaporation losses and to protect wild animals from drowning. Table 3.2-2 and 3.2-3 show the percussion drilling depth & layer for TFS and Detailed Design respectively.

Hole No.	BH-A	BH-1	BH-2	BH-3	BH-4 BH-5	BH-7a	BH-6 BH-7 BH-9	BH-12 BH-13 BH-14	BH-15 BH-16	BH-18	BH-22	BH-23 BH-24
Layer	2	6	6	3	1	3	1	1	1	6	1	1
Depth (m)	2.65	6.46	6.5	9.70	2.235	1.3	3.45	4.15	3.45	6.45	3.0	3.175

[Table 1.2-2] Percussion Drilling Depth & Layer for TFS

* Locations of BH-23, BH-24 are belongs to MC-3

[Table 1.2-3] Percussion Drilling Depth & Layer for D.D.

Hole No.	DBH-1	DBH-2	DBH-4	DBH-5	DBH-6	DBH- 14	DBH- 19	DBH- 45	DBH- 50	DBH- 51	DBH- 63	
-------------	-------	-------	-------	-------	-------	------------	------------	------------	------------	------------	------------	--

Layer	4	3	2	5	2	3	3	3	4	7	4
Depth (m)	10.10	2.06	4.95	7.60	1.61	2.30	3.28	3.85	1.72	10.02	6.46

1.3. Site Investigations

1.3.1. Investigation Criteria

The purpose of the geotechnical investigations is to determine the surface and subsurface conditions at specific points within the project area including the physical, mechanical properties of subsurface samples required for economical detailed design and construction.

The consultant selected 35 points (33 drilling, 2 test pit) along the canal for geotechnical investigations, covering MC3(DBH-64, DBH-65) and Secondary Canals.

One or two drilling holes were conducted on each of the proposed secondary canal route. This is enabled a comprehensive geotechnical investigation. The drilling location was considered around the site of the night storage reservoir and pumping station. The sedimentary reservoir site had a drilling depth of 4 m, while the pumping station site had a drilling depth of 7 m. Locations which were difficult to reach using a drilling rig, were replaced by Test Pit (SBH-27, SBH-28).

The investigation was based on international standards of ASTM or BS.

1.3.2. Implementation

A geotechnical expert was dispatched from February 6, 2021 to April 25, 2021 in Malawi. The details of tasks, such as drilling activities, in-situ test, laboratory tests, etc., shall be as follows:

[Table 1.3-1] Geotechnical Investigation Tasks

Items	Unit	Quantity	Remarks (Standard)
1. Drilling Boreholes			BS 5903(1990)
1) Percussive drilling	No (m)	33 (127.5)	
2) Rotary Drilling	No (m)	3 (11.5)	SBH-14(1.0-6.0m) SBH-19(3.5-7.0m) SBH-33(4.0-7.0m)
2. Test Pit	No (m)	2 (4)	SBH-27, SBH-28
3. Standard Penetration Test	LS	62	ASTM D 1586
4. Laboratory Test	-	-	BS 1337(1991)
1) sieve analysis	No	67	ASTM D 422
2) Natural Water Content	No	52	ASTM D 2216
3) Atterberg limits	No	67	ASTM D 4318
4) Specific gravity	No	67	ASTM D 854

C) ISAN

5) Permeability Test	No	33	-
----------------------	----	----	---

* Total investigation points are 35 (drilling 33 holes, test pit 2 holes)

* 3 holes for Rotary drilling, and Percussion Drilling 33 holes (SBH-14, SBH-19, SBH-33).

(Percussive drilling: the upper soil layer, Rotary drilling: the lower bed rock layer).

* (127.5) = drilling depth

1.4. Boreholes Analysis

1.4.1. Site and Testing Overview

Field work was conducted using percussive drilling method to recover samples for testing as well as conducting SPT (Standard Penetration Test) tests. The following field equipment was used.

Equipment	Specifications	Quantity	Remark	
Drill Rig	Dando Terrier	1 device	Geotechnical Soil Sampling Rig	
S.P.T Instrument	BS Standard	1 set	Hammer(63.5kg) Split Spoon Sampler	
GPS	Garmin GPSMAP 64x	1 device	N/A	

[Table 1.4-1] Field Test Equipment

Each borehole was drilled to a predetermined depth, majority of which was 4m. Certain points under the areas marked for structures were drilled to 7m to investigate further subsurface material. For bore hole drilling, 12 were on the MC1 route, 13 on the MC2, and 7 on the MC3, a total of 32 drillings were performed.

Figure 3.4-1 shows the Dando Terrier (drilling rig) and sampling scene of SBH-1.

[Figure 1.4-1] Drilling Rig(left) & Disturbed Sample(right)

The below tests were carried out in each set location.

[Table 1.4-2] Sampling and Test Breakdown

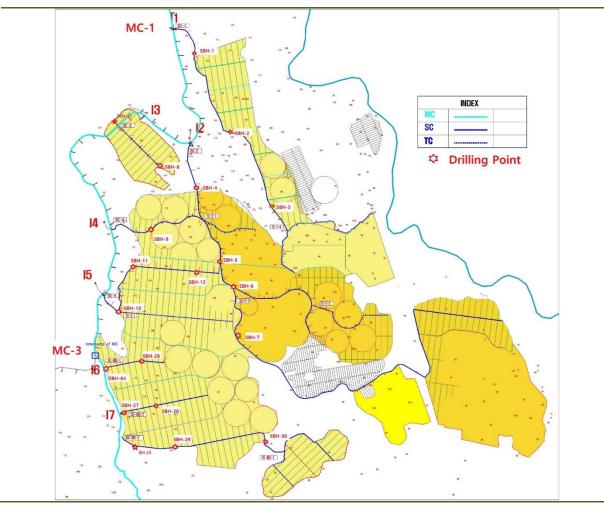
Item	Remarks
Percussive & Rotary Drilling	 SPT (every 1.5m depth) Specific Gravity Sieve analysis

[Figure 1.4-2] Laboratory facility & Test Equipment

1.4.2. Drilling Activities

As already stated, the geotechnical survey was mainly carried out using percussive drilling in order to retrieve soil samples from the subsurface. The percussive rig was also used in tandem with the standard penetration test. Where the strata showed presence of decomposed rock and percussive drilling could no longer penetrate, the rotary wash and bore method was used instead in order to reach the required depth for the SPT.

SPT testing was conducted according to ASTM (American Society for Testing and Materials) D 1586 at 1.5m and at 4m to allow for bearing capacity to be calculated at the two depths. This was carried out using a 63.5kg hammer to drive a hollow split spoon sampler into the soil. The number of blows for each run of 150mm was recorded for a total of 450mm. Total number of blows for the final 300mm are added together to give the SPT N number.


The drilling was carried out with a diameter of about NX, and a casing method was adopted to insert the casing to a solid layer without pore wall collapse.

For the topsoil section, the standard penetration test was performed to obtain the N value which is the index to grasp the degree of soil softening and compaction in the in situ. In addition, samples were taken using a Split Spoon Sampler.

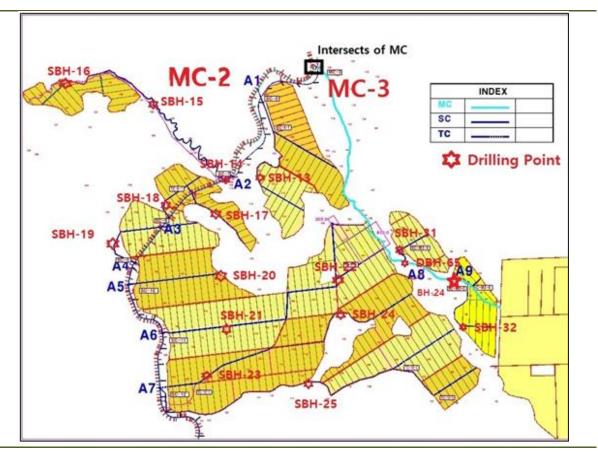
<u>Zone I-1</u>

Five Secondary Canals/pipelines are getting water from MC1. A total of 13 bore holes were drilled for these SCs. Figure 3.4-3 shows the drilling points in Zone I-1, and Figure 3.4-4 shows the same drilling points with Division numbers which was named according to the name of the Secondary Canal. Table 3.4-1 shows the locations and drilling depths of boreholes in Zone I-1.

[Figure 1.4-3] Drilling Points in Zone I-1

[Figure 1.4-4] Drilling Points in Zone I-1 (SCs branched from MC1) (with Division Number)
[Table 1.4-3] Locations and Drilling Depths of Boreholes in Zone I-1 (MC1)

Division Number	Drilling Point	Coordinates (De	ecimal Degrees)	Coordinate	es UTM (36K)	Drilling Depth
I1(SC1)						
SC1 POINT 1	SBH-1	-16.02429	34.766066	8,227,573	688,956	4.0
SC1 POINT 2	SBH-2	-16.04722	34.777099	8,225,025	690,115	4.0
SC1 POINT 3	SBH-3	-16.07005	34.791122	8,222,486	691,594	4.0
I2(SC2)						
SC2 POINT 1	SBH-4	-16.06521	34.767001	8,223,044	689,018	4.0
SC2 POINT 2	SBH-5	-16.08844	34.775082	8,220,466	689,860	4.0
SC2 POINT 3	SBH-6	-16.09572	34.779106	8,219,656	690,284	4.0
SC2-1						
SC2-1 POINT 1	SBH-7	-16.11217	34.78072	8,217,834	690,441	4.0
I3(SC3)						
SC3 POINT 1	SBH-33	-16.04135	34.75068	8,225,699	687,295	7.0
SC3 POINT 2	SBH-8	-16.05804	34.75492	8,223,862	687,758	4.0
I4(SC4)						
SC4 POINT 1	SBH-9	-16.07880	34.751247	8,221,554	687,319	4.0
15(SC5)						
SC5 POINT 1	SBH-10	-16.10374	34.742208	8,218,802	686,329	4.0
SC5 POINT 2	SBH-11	-16.08935	34.746689	8,220,391	686,822	3.0
SC5 POINT 3	SBH-12	-16.09075	34.764742	8,220,219	688,752	4.0
Sum	13 holes					54.0



Generally, this area consists of alluvial soils. Among them, 4 holes (SBH-1, SBH-10, SBH-11, SBH-33) confirmed the presence outcrops and boulders on the surface. Interpreting data from the logging table, SBH-1 shows the presence of weathered rock subsurface from 0.4m to 4.0m. SBH-10 has boulder (clayey gravel) from 0.7 to 2.0m, and silty sand from 2.0m to4.0m. SBH-11 has weathered rock from 0.7-3.0m. SBH-33 has boulders from 0.5 to 2.5m and also from 4.0 to 5.0m. It also has soft rock from 5.0 to 7.0m. In these strata, SPT N value is also 55. Because of the geological nature found on SBH 33 (boulder, weathered rock, soft rock), it was not possible to conduct SPT test.

<u>Zone A</u>

In this zone, Seven Secondary Canals/Pipelines are abstracting water from MC2. A total of 13 bore holes were drilled for these SCs. Still more, Five Secondary Canals are getting their water from MC3. A total of 7 bore holes were drilled for these SCs. In the feasibility study, two boreholes were drilled, (BH-23, BH-24) on Main Canal-3. During this study another two were drilled(DBH-64, DBH-65). Thus in total, the results of all these four boreholes were used in understanding the subsurface terrain of MC3. Figure 3.4-5 shows the drilling points in Zone A.

Figure 3.4-6 shows the drilling points on the SCs which are branching from MC2. The division numbers of holes were named according to the name of the Secondary Canal. Table 3.4-4 shows the locations of these points.

[Figure 1.4-5] Drilling Points in Zone A

[Figure 1.4-6] Drilling Points in Zone A (SCs branched from MC2) (with Division Number) [Table 1.4-4] Locations and Drilling Depths of Boreholes in Zone A (MC2)

Division Number	Drilling Point	Coordinates (De	ecimal Degrees)	Coordinate	es UTM (36K)	Drilling Depth
A1(SC6)						
SC6 POINT 1	SBH-13	-16.14725	34.717964	8,214,010	683,695	4.00
A2(SC7)						
SC7 POINT 1	SBH-14	-16.14688	34.710271	8,214,057	682,873	6.00
SC7 POINT 2	SBH-15	-16.12834	34.687730	8,216,129	680,479	4.00
SC7 POINT 3	SBH-16	-16.12213	34.663174	8,216,837	677,858	4.00
A3(SC8)						
SC8 POINT 1	SBH-17	-16.15753	34.705613	8,212,883	682,365	4.00
SC8 POINT 2	SBH-18	-16.15563	34.691121	8,213,106	680,817	4.00
A4(SC9)						
SC9 POINT 1	SBH-19	-16.16660	34.677135	8,211,904	679,311	7.00
A5(SC10)						
SC10 POINT 1	SBH-20	-16.17434	34.706758	8,211,022	682,472	4.00
A6(SC11)						
SC11 POINT 1	SBH-21	-16.18931	34.707952	8,209,364	682,586	4.00
SC11 POINT 2	SBH-22	-16.17517	34.740319	8,210,900	686,060	4.00
A7(SC12)						
SC12 POINT 1	SBH-23	-16.20273	34.703575	8,207,883	682,106	4.00
SC12 POINT 2	SBH-24	-16.18480	34.741517	8,209,833	686,179	4.00

Korea Rural Community Corporation

B DASAN CONSULTANTS

C ISAN

SC12 POINT 3	SBH-25	-16.20389	34.733279	8,207,728	685,281	4.00
--------------	--------	-----------	-----------	-----------	---------	------

This area again consists of alluvial soils same as the previous zone. Results from analysis showed that borehole (SBH-14) has outcrops and boulders on the surface. 3 holes (SBH-13, SBH-15, SBH-19) come out with rock samples while drilling. by further interpreting logged data, SBH-13 showed the presence of weathered rock subsurface from 0.4m to 4.0m. Borehole SBH-14 has soft rock from 0.6 to 6.0m, while BoreholeSBH-15 has weathered rock subsurface from 1.0m to1.8m, and from 2.0 to 4.0m. SBH-19 has weathered rock from 3.0-3.5m, soft rock from 3.5-7.0m. In all these strata, SPT N value is also 55. Because of the geological nature found on SBH-14 (weathered rock, soft rock), it was not possible to conduct SPT test.

Figure 3.4-7 shows the drilling points on the SCs which emanates from MC3. The numbering code of these BH was based on the name of the Secondary Canal. Table 3.4-5 shows the locations of these points.

[Figure 1.4-7] Drilling Points in Zone A (SCs branched from MC3) (with Division Number)

Division Number	Drilling Point	Coordinates (Decimal Degrees)		Coordinate	Drilling Depth	
MC3	DBH-64	-16.1217	34.73813	8,216,811	685,877	3.00
MC3	(BH-23)	-	-	-	-	7
MC3	DBH-65	-16.17062	34.76036	8,211,386	688,209	3.00
МСЗ	(BH-24)	-	-	-	-	7

[Table 1.4-5] Locations and Drilling Depths of Boreholes in Zone A (MC3)

			1			
SC3-1						
SC3-1 POINT 1	SBH-26	-16.11912	34.749973	8,217,094	687,145	3.00
SC3-2						
SC3-2 POINT 1	SBH-27	-16.13496	34.743622	8,215,346	686,451	3.00
SC3-2 POINT 2	SBH-28	-16.13269	34.753829	8,215,588	687,545	3.00
SC3-3						
SC3-3 POINT 1	SBH-29	-16.14607	34.759109	8,214,103	688,097	4.00
SC3-3 POINT 2	SBH-30	-16.14594	34.791410	8,214,087	691,552	4.00
SC3-4						
SC3-4 POINT 1	SBH-31	-16.16760	34.758675	8,211,721	688,030	4.00
SC3-5						
SC3-5 POINT 1	SBH-32	-16.18828	34.776423	8,209,416	689,909	4.00

* The results of two holes (BH-23, BH-24) on the MC3 conducted in the FS, were also used.

Results of boreholes drilled in this area also shows the predominance of alluvial soils. two boreholes (BH-23, BH-24) were assessed during the feasibility study period and their results are incorporated in this report. Further to this two which were done during FS, additional two boreholes (DBH-64, DBH-65) were drilled on the MC3. Among them, 1 hole (DBH-64) showed the presence of outcrops on surface. Another borehole (BH-23) came out with rock samples while drilling. by carefully checking and analyzing logging samples, DBH-64 showed the presence of weathered rock subsurface from 0.5m to 4.0m whileBH-23 has weathered rock from 0.88 to 2.81m. In all these strata, SPT N value is also 55++.

Two points (SBH-27, SBH-28) were excavated manually in the form of test pits due to access to local conditions which prevented the drilling rigs to access the area. However, percussion drilling which was conducted on 3 boreholes (SBH-26, SBH-28, SBH-31) confirmed the presence of outcrops and boulders on the surface. Interpreted data from logging samples shows that, SBH-26 has weathered rock subsurface from 0.8m to 4.0m. and SBH-27 has weathered rock from 1.0 to2.0m. SBH-28 has weathered rock subsurface from 1.3m to 2.0m while SBH-31 has weathered rock from 0.6 to 4.0m. In all these strata, SPT N value is also 55++. The test pits (SBH-27, SBH-28) couldn't provide the SPT N value because as previously stated, they were manually excavated.

Three Survey points close to the Mwanza River were also drilled (SBH-29, 30 and 31). results of log data shows that SBH-29 has Sandy Silty Clay from 1 m below the surface to the drilling depth (4 m), and SBH-30 point, almost all the drilling depth (0-4 m) has Sand. The SPT values at these two points were 24 and 23, respectively, indicating that those bearing capacity are very weak. The SBH-31 point was identified as weathered rock from 0.6 m below the surface, and the bearing capacity was 55++, which was very good.

1.4.3. SPT (Standard Penetration Test)

SPT testing was conducted according to ASTM D 1586 at 1.5m and at 4m to allow for bearing capacity to be calculated at the two depths. This test was conducted to identify the relative density, consistency and composition of the strata, and also for the identification of constituents of the collected disturbed samples.

This test was carried out using a 63.5kg hammer to drive a hollow split spoon sampler into the soil. The number of blows for each run of 150mm was recorded for a total of 450mm. Total number of blows for the final 300mm are added together to give the SPT N number.

Bearing capacity was calculated using Bowles after Mayerhof 1976, whereas friction angles were calculated using Peck et al 1953.

Table 3.4-6 to 3.4-8 show the results of the SPT tests.

Division	Drilling	Bearing Ca	pacity (kPa)	Friction Ang	le (Degrees)	SP	PT N
	Point	1.5m	4.0m	1.5m	4.0m	1.5m	4.0m
<u>I1(SC1)</u>							
SC1 POINT 1	SBH-1	1,919	2,022	32	32	55++	55++
SC1 POINT 2	SBH-2	256	384	29	29	14	19
SC1 POINT 3	SBH-3	461	512	29	29	24	25
12(SC2)							
SC2 POINT 1	SBH-4	256	256	29	29	13	13
SC2 POINT 2	SBH-5	230	230	29	28	12	11
SC2 POINT 3	SBH-6	102	256	28	29	6	12
<u>SC2-1</u>							
SC2-1 POINT 1	SBH-7	230	333	29	29	12	16
<u>13(SC3)</u>							
SC3 POINT 1	SBH-8	435	768	30	30	23	38
<u>14(SC4)</u>							
SC4 POINT 1	SBH-9	256	742	28	30	13	37
<u>15(SC5)</u>							
SC5 POINT 1	SBH-10	1,919	2,022	32	32	55++	55++
SC5 POINT 2	SBH-11	1,919	2,022	32	32	55++	55++
SC5 POINT 3	SBH-12	384	358	29	29	20	18

[Table 1.4-6] SPT N & Bearing Capacity & Friction Angle of Boreholes in Zone I-1 (MC1)

* SPT Test of SBH-11 was conducted 1.5m, 3.0m.

[Table 1.4-7] SPT N & Bearing Capacity & Friction Angle of Boreholes in Zone A (N	IC2)
---	------

Division	Drilling	Bearing Capacity (kPa)		Friction Angle(Degrees)		SPT N	
Division	Point	1.5m	4.0m	1.5m	4.0m	1.5m	4.0m
A1(SC6)							
SC6 POINT 1	SBH-13	384	2,022	29	32	20	55++
A2(SC7)							
SC7 POINT 1	SBH-14	-	-	-	-	-	-
SC7 POINT 2	SBH-15	1,919	870	32	30	55++	43
SC7 POINT 3	SBH-16	358	256	29	29	18	13
A3(SC8)							

SC8 POINT 1	SBH-17	230	640	29	30	12	31
SC8 POINT 2	SBH-18	307	205	29	28	16	10
A4(SC9)							
SC9 POINT 1	SBH-19	281	1,663	29	31	15	55++
A5(SC10)							
SC10 POINT 1	SBH-20	230	256	29	29	12	13
A6(SC11)							
SC11 POINT 1	SBH-21	307	537	29	30	16	27
SC11 POINT 2	SBH-22	179	230	28	29	9	11
A7(SC12)							
SC12 POINT 1	SBH-23	358	409	29	29	18	20
SC12 POINT 2	SBH-24	102	307	28	29	6	15
SC12 POINT 3	SBH-25	128	154	28	28	7	7

* SPT Test of SBH-14 was not conducted for its geologic condition (soft rocks).

[Table 1.4-8] SPT N & Bearing Capacity & Friction Angle of B	Boreholes in Zone A (MC3)
--	---------------------------

Division Number	Drilling Point		ring Capacity (kPa) Friction		gle(Degrees)	SPT N	
	Drining i onit	1.5m	4.0m	1.5m	4.0m	1.5m	4.0m
	DBH 64	1,919	2,022	32	32	55++	55++
Main Canal-3	(BH-23)	-	-	-	-	7	55++
Main Canai-3	DBH 65	205	128	28	28	11	6
	(BH-24)	-	-	-	-	7	7
SC3-1							
SC3-1 POINT 1	SBH-26	1,024	2,022	31	32	54	55++
SC3-2							
SC3-2 POINT 1	SBH-27	-	-	-	-	-	-
SC3-2 POINT 2	SBH-28	-	-	-	-	-	-
SC3-3							
SC3-3 POINT 1	SBH-29	512	486	29	29	26	24
SC3-3 POINT 2	SBH-30	77	461	27	29	4	23
SC3-4							
SC3-4 POINT 1	SBH-31	1,919	2,022	32	32	55++	55++
SC3-5							
SC3-5 POINT 1	SBH-32	102	128	28	28	6	6

* In the feasibility study, the results of the two holes (BH-23, BH-24) conducted on Main Canal-3 were used together.

1.4.4. Groundwater level measurement

Groundwater level was measured and recorded in each borehole to account for hydraulic pressure and effective overburden load due to groundwater level change.

Groundwater level measurement was performed first in the casing after completion of the drilling

operation, and after 24 hours after the completion of the drilling operation when the water level has stabilized. However, the measured groundwater level may vary depending on the season and meteorological phenomenon.

The standing water level (post 24h) will affect the bearing capacity values and thus need to be factored into the calculations.

Even though, the working period was in rainy season, it was only one site (SBH-6), that had stable water level measure at 2m below surface. Thus, it can be concluded with confidence that the permeability is very high in this area.

[Figure 1.4-8] Measure of Groundwater level (SBH-2, SBH-13)

1.5. Laboratory Activities

In order to understand the physical and mechanical properties of each stratum, the laboratory test was conducted for further information. Two samples were recovered from each borehole and were tested as described below:

1.5.1. Sieve Analysis

The classification method of soil was as follows. At the site survey, gentle classification method was used to classify strata. Laboratory test results were obtained by using the unified classification method. The United Standard classification system was developed by A. Casagrande as a method of engineering soil classification by soil size and consistency limits. This USCS is often used to classify soil engineering properties. The following table summarizes the USCS classification methods.

[Table 1.5-1] Unified Soil Classification	System
---	--------

~	ons for Field and Identification	Group Symbol	Typical Names
	Clean gravels (Less than 5% of	GW	Well graded gravels, gravel-sand mixtures, little or no fines*
Gravel (More than 50% of coarse fraction	material smaller than No.200 sieve size)	GP	Poorly graded gravels, gravel-sand mixtures, little or no fines*
larger than No.4	Gravels with fines (More than 12% of	GM	Silty gravels, and gravel-sand-silt mixtures
Sieve size)	material smaller than No.200 sieve size)*	GC	Clayey gravels, and gravel-sand-clay mixtures
	Clean sands (Less than 5%of	SW	Well graded sands, gravelly sands, little or no fines*
Sands (50% or more of	material smaller than No.200 sieve size)	SP	Poorly graded sands and gravelly sands, little or no fines*
coarse fraction smaller than No.4 sieve size)	Sands with fine (More than 12% of	SM	Silty sands, sand-silt mixtures
SIEVE SIZE)	material smaller than No.200 sieve size)*	SC	Clayey sands, sand-clay mixtures
	o'lu 1.1	ML	Inorganic silts, very fine sands, rock flour, silty or clayey fine sands
	Silts and clays (Liquid limit less than 50)	CL	Inorganic clays of low to medium plasticity; gravelly clays, silty clays, sandy clays, lean clays
Fine grained soils (50% or More of material is smaller	tilali 50)	OL	Organic silts and organic silts-clays of low plasticity
than No.200 sieve size)	Silts and clays	MH	Inorganic silts, micaceous or diatomaceous fine sands or silts, elastic silts
	(Liquid limit greater than 50)	CH	Inorganic clays of high plasticity, fat clays
	tian 50)	ОН	Organic clays of medium to high plasticity
Highly or	rganic soils	Pt	Peat, muck and other highly organic soils

Sieve analysis gives an interpretation of the particle size distribution, which in turn allows us to determine the quantitative composition of the sample. The material passing the 0.075mm sieve size can be classified as silt or clay, so when a sample has 75% passing the 0.075mm sieve such as SBH25 at 0.3-1.2m it can be understood that 75% of the sample is silt or clay. The determination between silt and clay is then found from the Atterberg limits in the following section.

Table 3.5-2 to 3.5-4 show the results of sieve analysis for Secondary Pipelines of MC1, Mc2 and MC3 respectively.

	Denth (m)	% Material Passing Sieve Size				
Borehole No.	Depth (m)	2.36mm	0.425mm	0.075mm		
SBH-1	0.5 - 1.5	92	78	60		
SBH-2	3.5 - 4.0	85	54	21		
SBH-3	0.3 - 1.8	98	70	21		
SBH-3	2.4- 3.0	98	30	11		
SBH-4	0.5 - 1.6	100	82	33		
SBH-4	2.8 - 4.0	96	61	18		
SBH-5	0.1 - 2.1	100	90	52		
SBH-5	2.4 - 3.4	96	90	59		
SBH-6	0.3 - 1.1	100	86	50		
SBH-6	2.0 - 4.0	94	80	48		
SBH-7	0.3 - 1.3	99	86	50		
SBH-7	2.3 - 3.5	99	86	42		
SBH-33	0.4 - 1.2	72	50	30		
SBH-33	1.2 - 3.0	89	64	31		
SBH-8	0.6 - 1.2	100	84	38		
SBH-8	2.2 - 3.3	95	69	27		
SBH-9	0.5 - 1.0	99	82	32		
SBH-9	2.6 - 3.4	80	63	31		
SBH-10	0.7 - 1.0	60	42	20		
SBH-10	2.0 - 3.0	99	64	21		
SBH-11	0.0 - 0.9	83	63	38		
SBH-11	0.9 - 4.0	100	60	19		
SBH-12	0.2 - 1.2	100	78	43		
SBH-12	2.0 - 3.0	96	86	49		

[Table 1.5-2] Sieve Analysis for Secondary Lines of MC1

[Table 1.5-3] Sieve Analysis for Secondary Lines of MC2

Borehole No.	Donth (m)	% Material Passing Sieve Size				
Borenoie No.	Depth (m)	2.36mm	2.36mm 0.425mm 0.075m			
SBH-13	0.0 - 0.4	92	85	54		
SBH-13	0.4 - 0.3	90	67	39		
SBH-14	0.6 - 1.1	46	32	8		
SBH-14	2.0 - 3.0	95 67		33		
SBH-15	0.4 - 1.0	96 74		32		
SBH-15	1.0 - 1.8	85 67		26		

SBH-16	0.9 - 1.3	100	71	44
SBH-16	2.5 - 3.4	97	61	21
SBH-17	0.0 - 0.8	99	53	15
SBH-17	0.8 - 3.7	97	46	3
SBH-18	1.2 - 2.3	100	91	36
SBH-18	2.3 - 4.0	100	40	14
SBH-19	0.2 - 1.1	100	69	61
SBH-19	2.0 - 3.0	92	74	45
SBH-20	0.5 - 1.8	99	52	4
SBH-20	1.8 - 4.0	98	40	5
SBH-21	0.3 - 1.4	100	78	62
SBH-21	2.3 - 3.8	95	46	10
SBH-22	0.9 - 2.5	100	97	41
SBH-22	2.5 - 4.0	99	56	14
SBH-23	0.3 - 1.3	100	76	44
SBH-23	2.5 - 3.8	95	47	10
SBH-24	0.4 - 1.3	100	44	23
SBH-24	1.3 - 4.0	99	23	4
SBH-25	0.3 - 1.2	100	94	75
SBH-25	1.2 - 4.0	99	45	8

[Table 1.5-4] Sieve Analysis for MC3, Secondary Lines of MC3

Borehole No.	Donth (m)	% Material Passin		e Size
Borenoie No.	Depth (m)	2.36mm	0.425mm	0.075mm
SBH-26	0.3 - 0.8	52	34	20
SBH-26	0.8 - 2.0	90	55	26
SBH-27	0.4 - 1.0	78	55	37
SBH-27	1.0 - 2.0	95	69	7
SBH-28	0.9 - 1.2	95	80	50
SBH-28	1.2 - 2.0	83	52	30
SBH-29	0.4 - 1.0	100	87	67
SBH-29	1.0 - 3.0	98 84		54
SBH-30	0.2 - 1.0	99 38		4
SBH-30	2.0 - 3.0	99 41		5
SBH-31	0.6 - 1.0	79	47	18
SBH-31	2.0 - 3.0	100	100 76	
SBH-32	0.1 - 1.1	100 90		67

SBH-32	2.9 - 4.0	99	91	54
DBH-64	0.5 - 1.0	88	51	27
(BH-23)	0.25 – 0.45	71	59	38
(BH-23)	1.95 – 2.35	65	17	6
DBH-65	0.3 - 1.7	100	95	44
DBH-65	2.0 - 3.2	100	93	60
(BH-24)	0.95 – 2.6	100	95	79
(BH-24)	2.6 - 3.0	99	94	55

* In the feasibility study, the results of BH-23 and BH-24 conducted on Main Canal-3 were used together.

1.5.2. Natural Moisture Content

Natural moisture content, is the ratio of the weight of water to the weight of the solids in each mass of soil. This ratio is usually expressed as percentage. When voids are filled with air, water content is equal to zero (dry soil). Soils are weighed in a container prior to be placed in a 100°C oven for 24h to allow to dry out completely. The weight of the soil is re-measured, and the difference is calculated as a percent.

Table 3.5-5 to 3.5-7 show the natural moisture contents for SCs of MC1, MC2 and MC3 respectively.

[Table 1.5-5] Natural Moisture Content for Secondary Lines of MC1

Borehole ID	Depth (m)	NMC %
SBH-1	2.0	4.8
SBH-2	2.0	6.6
SBH-3	2.0	1.2
SBH-4	2.0	5.4
SBH-5	2.0	23.4
SBH-5	4.0	16.2
SBH-6	2.0	17.0
SBH-6	4.0	22.3
SBH-7	2.0	10.2
SBH-7	4.0	15.1
SBH-33	2.0	2.8
SBH-33	4.0	16.7
SBH-8	2.0	6.1
SBH-8	4.0	9.0
SBH-9	2.0	7.2
SBH-9	4.0	5.6
SBH-10	2.0	8.6
SBH-10	4.0	9.4
SBH-11	2.0	2.0
SBH-12	2.0	12.8
SBH-12	4.0	9.6

NMC of 2nd Line of MC1 is 1.2 – 23.4%. The value of the sample taken at 2m is 1.2-23.4%. The value of the sample taken at 4m is 5.6-22.3%. (Table 3.5-5)

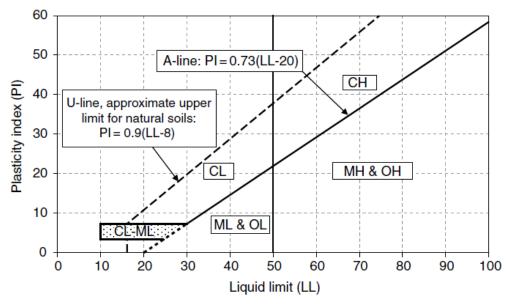
Borehole ID	Depth (m)	NMC %
SBH-13	2.0	7.0
SBH-13	4.0	7.8
SBH-15	2.0	3.7
SBH-15	4.0	4.0
SBH-16	2.0	14.5
SBH-16	4.0	22.9
SBH-17	4.0	4.7
SBH-18	2.0	3.4
SBH-18	4.0	10.5
SBH-19	2.0	14.1
SBH-19	4.0	7.3
SBH-20	2.0	15.8
SBH-20	4.0	11.6
SBH-21	2.0	4.0
SBH-21	4.0	7.5
SBH-22	2.0	8.1
SBH-23	2.0	8.8
SBH-23	4.0	1.6
SBH-24	2.0	2.2
SBH-24	4.0	3.1
SBH-25	2.0	2.6
SBH-25	4.0	4.1

[Table 1.5-6] Natural Moisture Content for Secondary Lines of MC2

NMC of 2^{nd} Line of MC2is 1.6 – 22.9%. The value of the sample taken at 2m is 2.2-15.8%. The value of the sample taken at 4m is 1.6-22.9%. (Table 3.5-6)

[Table 1.5-7] Natural Moisture Content for Secondary Lines of MC3

Borehole ID	Depth (m)	NMC %
DBH-64	2.0	6.5
DBH-65	2.0	4.2
DBH-65	4.0	19.5
SBH-26	2.0	6.7


SBH-26	4.0	12.2
SBH-29	2.0	8.9
SBH-29	4.0	6.7
SBH-31	2.0	2.6
SBH-32	4.0	28.7

NMC of MC3 and 2^{nd} Line of MC3 is 2.6 – 28.7%. The value of the sample taken at 2m is 2.6-8.9%. The value of the sample taken at 4m is 6.7-28.7%. (Table 3.5-7)

1.5.3. Atterberg Limits & Specific Gravity & Permeability Test

Atterberg Limit

Soil is placed into the Casagrande cup, and a groove is made down its center with a standardized tool of 2 mm (0.079 in) width. The cup is repeatedly dropped from a height of 10 mm onto a hard base at a rate of 120 blows per minute, during which the groove closes gradually as a result of the impact. The number of blows for the groove to close is recorded. The moisture content at which it takes 25 blows of the cup to cause the groove to close over a distance of 12.7 mm (0.50 in) is defined as the liquid limit. The test is normally run at several moisture contents, and the moisture content which requires 25 blows to close the groove is interpolated from the test results.

Using the plasticity index and the liquid limit we can classify the sample using the above chart. The symbols correspond to the unified soils classification system (USCS).

Samples with the classification NP (non-plastic) or SP (slightly plastic) are classified as non-cohesive soils and typically made up of sand and gravels.

Specific Gravity

Specific gravity was calculated using the Pycnometer method.

A clean dry pycnometer was weighted prior to having a determined mass of oven dried soil added to it, and then reweighed.

De-aired water is added to the pycnometer, the sample is shaken and left to rest to allow for any air to leave the sample. The weight is taken after the sample has been de-aired.

Once complete the sample is removed and the pycnometer is filled with water and reweighed. The below equation is used to determine the specific gravity of the sample.

$$G = \frac{M2 - M1}{(M2 - M1) - (M3 - M4)}$$
(3.1)

Specific gravity of the soils is used when calculating the density of the soil, this will help with structure design and embankment design as the loading on substructures will vary depending on the density.

The specific gravity also gives indications on the porosity of the material and the voids it may contain. Typically, soils range between 2.5-2.8 with the coarser grained soils having a lower specific gravity of 2.0-2.2.

Permeability

The falling head permeability test involves flow of water through a relatively short soil sample connected to a standpipe which provides the water head and also allows measuring the volume of water passing through the sample.

Before starting the flow measurements, the soil sample is saturated, and the standpipes are filled with de-aired water to a given level. The test then starts by allowing water to flow through the sample until the water in the standpipe reaches a given lower limit. The time required for the water in the standpipe to drop from the upper to the lower level is recorded. The standpipe is refilled, and the test is repeated three times.

The unit for the permeability test is given as k = cm/s.

Borehole Depth			Atterberg Limits	Specific	Permeability	
ID	(m)	LL %	PI	LS %	Gravity	K(cm/s)
SBH-1	0.5 - 1.5	NP	NP	0.0	3.215	3.99 X 10 ⁻⁶
SBH-2	3.5 - 4.0	NP	NP	0.0	3.236	-
SBH-3	0.3 - 1.8	NP	NP	0.0	2.552	2.31 X 10 ⁻⁴
SBH-3	2.4- 3.0	NP	NP	0.0	3.149	-
SBH-4	0.5 - 1.6	SP	S	0.7	2.780	-
SBH-4	2.8 - 4.0 (2.4 - 3.0)	NP	NP	0.0	2.989	6.43 X 10 ⁻⁵
SBH-5	0.1 - 2.1 (0.5 – 1.6)	32	17	7.9	2.667	2.25 X 10 ⁻⁴
SBH-5	2.4 - 3.4	31.8	14	7.9	2.633	
SBH-6	0.3 - 1.1	28.2	12	7.1	2.669	-
SBH-6	2.0 - 4.0	24	14	8.6	2.788	2.49 X 10 ⁻⁴
SBH-7	0.3 - 1.3	30	13	7.1	2.152	-
SBH-7	2.3 - 3.5	29	15	7.1	2.981	1.67 X 10 ⁻⁴

[Table 1.5-8] Atterberg Limits & Specific Gravity & Permeability Test Result for Secondary Lines of MC1

kee Korea Rural Community Corporation

🗈 DASAN CONSULTANTS 📢 ISAN

SBH-33	0.4 - 1.2	SP	SP	2.9	2.333	
SBH-33	1.2 - 3.0	SP	SP	0.7	2.298	3.31 X 10 ⁻⁴
SBH-8	0.6 - 1.2	29	11	5.7	2.169	-
SBH-8	2.2 - 3.3	SP	SP	2.9	2.493	1.19 x 10 ⁻⁵
SBH-9	0.5 - 1.0 (0.3 - 1.1)	SP	SP	2.1	2.018	7.77 X 10 ⁻⁶
SBH-9	2.6 - 3.4	28	14	5.7	2.519	-
SBH-10	0.7 - 1.0	SP	SP	2.9	2.965	-
SBH-10	2.0 - 3.0 (2.0 - 4.0)	SP	SP	1.4	3.044	4.18 X 10 ⁻⁵
SBH-11	0.0 - 0.9	41	20	12.1	1.975	
SBH-11	0.9 - 4.0 (0.3 - 1.3)	NP	NP	0.0	3.662	1.42 X 10 ⁻⁵
SBH-12	0.2 - 1.2	NP	NP	0.0	2.896	-
SBH-12	2.0 - 3.0 (2.3 - 3.5)	32	14	14.0	2.447	8.96 X 10 ⁻⁶

*() is the domain of the permeability test

[Table 1.5-9] Atterberg Limits & Specific Gravity & Permeability Test Result for Secondary Lines
of MC2

Borehole	Depth		Atterberg Limits	3	Specific	Permeability
ID	(m)	LL %	PI	LS %	Gravity	K(cm/s)
SBH-13	0.0 - 0.4	32.6	21	7.1	2.384	-
SBH-13	0.4 – 3.0	SP	SP	1.4	2.475	8.96 X 10 ⁻⁶
SBH-14	0.6 - 1.1	NP	NP	0.0	2.927	-
SBH-14	2.0 - 3.0	NP	NP	0.0	3.614	8.89 X 10 ⁻⁵
SBH-15	0.4 - 1.0	NP	NP	0.0	2.462	-
SBH-15	1.0 - 1.8	SP	SP	1.4	2.447	3.16 X 10 ⁻⁴
SBH-16	0.9 - 1.3	31	15	7.1	2.243	-
SBH-16	2.5 - 3.4	NP	NP	0.0	2.367	2.49 X 10 ⁻⁴
SBH-17	0.0 - 0.8	NP	NP	0.0	2.571	-
SBH-17	0.8 - 3.7	NP	NP	0.0	3.174	2.70 X 10 ⁻⁴
SBH-18	1.2 - 2.3	NP	NP	0.0	2.221	-
SBH-18	2.3 - 4.0 (2.0 - 4.0)	NP	NP	0.0	2.195	4.92 X 10 ⁻⁴
SBH-19	0.2 - 1.1	NP	NP	0.0	1.992	-
SBH-19	2.0 - 3.0	30	14	7.7	2.310	1.21 X 10 ⁻⁵
SBH-20	0.5 - 1.8	NP	NP	0.0	2.320	-
SBH-20	1.8 - 4.0	NP	NP	0.0	3.165	2.58 X 10 ⁻³
SBH-21	0.3 - 1.4	NP	NP	0.0	2.268	-
SBH-21	2.3 - 3.8	NP	NP	0.0	2.602	2.58 X 10 ⁻³
SBH-22	0.9 - 2.5	NP	NP	0.0	2.622	-

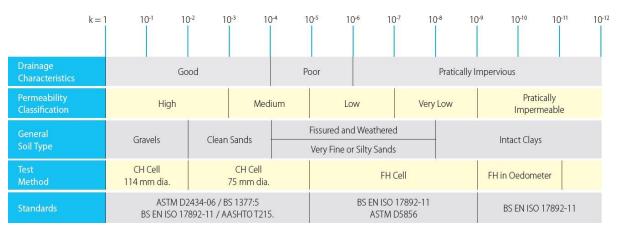
SBH-22	2.5 - 4.0 (2.0 - 4.0)	NP	NP	0.0	2.249	6.13 X 10 ⁻⁴
SBH-23	0.3 - 1.3	NP	NP	0.0	2.916	-
SBH-23	2.5 - 3.8 (2.3 - 3.8)	26	9	4.5	2.863	2.58 X 10 ⁻³
SBH-24	0.4 - 1.3	NP	NP	0.0	2.521	-
SBH-24	1.3 - 4.0	NP	NP	0.0	2.491	3.32 X 10 ⁻³
SBH-25	0.3 - 1.2	32.6	21	7.1	3.558	-
SBH-25	1.2 - 4.0	SP	SP	1.4	2.305	3.31 X 10 ⁻³

*() is the domain of the permeability test

[Table 1.5-10] Atterberg Limits & Specific Gravity & Permeability Test Result for MC3, 2nd Line
of MC3

Borehole	Borehole Depth		Atterberg Limits	6	Specific	Permeability
ID	(m)	LL %	PI	LS %	Gravity	K(cm/s)
SBH-26	0.3 - 0.8	30	13	7.1	2.472	-
SBH-26	0.8 - 2.0	NP	NP	0.0	2.426	4.56 X 10 ⁻⁶
SBH-27	0.4 - 1.0	41	22	10.7	2.223	-
SBH-27	1.0 - 2.0	SP	SP	2.9	2.931	2.10 X 10 ⁻⁷
SBH-28	0.9 - 1.2	33	18	10.7	2.417	-
SBH-28	1.2 - 2.0	NP	NP	0.0	2.185	2.35 X 10 ⁻⁴
SBH-29	0.4 - 1.0	41	19	10.7	2.319	-
SBH-29	1.0 - 3.0	SP	SP	4.3	2.326	1.84 X 10 ⁻⁵
SBH-30	0.2 - 1.0	36	17	7.1	2.711	-
SBH-30	2.0 - 3.0	41.8	21	10.7	2.099	2.96 X 10 ⁻³
SBH-31	0.6 - 1.0	NP	NP	0.0	2.147	-
SBH-31	2.0 - 3.0	NP	NP	0.0	2.171	1.22 X 10 ⁻⁴
SBH-32	0.1 - 1.1	NP	NP	0.0	2.171	-
SBH-32	2.9 - 4.0	47	23	7.9	2.447	1.05 X 10 ⁻³
DBH-64	0.5 - 1.0	SP	SP	1.4	2.320	-
(BH-23)	0.25 – 0.45	41	23	-		
(BH-23)	1.95 – 2.35	NP	SP	-		
DBH-65	0.3 - 1.7	SP	SP	2.1	2.353	-
DBH-65	2.0 - 3.2	NP	NP	0.0	2.056	-
(BH-24)	0.95 – 2.6	NP	SP	-	-	-
(BH-24)	2.6 - 3.0	34	18	-	-	-

* In the feasibility study, Geotechnical analysis of BH-23 and BH-24 were conducted during Feasibility study, and their results were used togather with new BH on Main Canal-3.


The lab test results confirmed the geological data, in which alluvial sandy/silty deposits are the predominant materials found within the first 2m. This is shown through the non-plastic and slightly plastic material results which classify the samples as non-cohesive silts and sands, and the remainder

of the samples showed medium PI levels which would indicate presence of inorganic clays. Most of the samples have more than 50% (passing the 0.425mm sieve), further supporting the above statement of alluvial and colluvium deposits.

After the initial alluvial deposits, a competent decomposed weathered rock layer was typically found between 3 – 5m in depth. This gave good SPT and bearing capacity results as shown in above section.

Table 3.5-2 shows the synthesized classification of the permeability values based on the most applied standards.

[Figure 1.5-2] Permeability Values (Reference: https://www.controls-group.com/usa/soilpermeability/)

1.6. Borehole Data Analysis

Boreholes with low bearing capacity, below 150kPa, within the initial 1.5m are SBH-6, SBH-24, SBH-25, SBH-32 whereas SBH-30 showed bearing values of 77kPa. Care should be taken on these sections during construction phase.

When the bearing capacity of the ground is low, there are methods of stabilizing the ground such as chemical treatment, grouting, and soil mixing. In terms of cost, grouting is the highest, and chemical treatment is the lowest.

Since MC3 will be installed as a concrete box canal, it will generate more weight than any other SCs. The box canal has a scale of 2.5m×2.5m with the thickness of 25cm. When the water channel is filled with water, the weight per unit area does not exceed 5 tons/m². At SBH-6 and SBH-32, which are points on the MC3 route, the bearing capacity is much greater than this value, so special ground stabilization is not required.

The investigation period was rainy, so the permeability test was conducted in the laboratory. Thus, the K is lower than the field test. Most of the soils at boreholes are within the group of Loess Loam, with coefficient of permeability in the range of 10⁻³ to 10⁻⁴. Nevertheless, K in several samples is unusually low because the test domain is composed of weathered rock, silty sand, and clayey sand.

(Detailed borehole data is provided in the Appendix A.2)

1.7. Photos

[Figure 1.7-1] Drilling of Boreholes

[Figure 1.7-2] Disturbed Sample of drilling holes

[Figure 1.7-3] Cores Recovered from BH14 and BH33 Respectively

1.8. Conclusion

For Geotechnical investigation, the consultant selected 35 points (33 drilling, 2 test pit) along the canal, covering Main Canal-3(DBH-64, DBH-65), Secondary Canals of Main Canal-1, Main Canal-2, Main Canal-3.

<u>Geography</u>

The elevation of this investigation boundary is within 90- 150m. Most of the area is used as farmland, grassland. There are mountains and Mzimba River, Mwambezi River, Tributary of Mzimba River, around the project area as well as the Shire River. These mountains & rivers will play an important role in the balance of the area's water resources.

Surface Geotechnical Survey

Several types of rocks were identified in the investigation area. On the road from Blantyre to Chikwawa, there are outcrop of granite and gneiss. In addition, weathered zone and weathered rock based on granite and gneiss can be found at the construction site around intake. Most of the samples identified at the construction site were fresh and sturdy on the surface, but these are weathered rock that was easily crushed by geologic hammer or hand power.

Around SBH-1, SBH-10, SBH-11 of MC1's 2nd line, metamorphic and volcanic rock outcrops can be easily identified. Furthermore, rock boulders are widely spread around SBH-33. On the remaining borehole sites, the dominant composition was alluvium.

Around the bifurcation area where the Main Canal intersects (MC1, MC2, MC3), there is a wide distribution of metamorphic rock-based boulder and outcrops.

The Secondary Canal (Pipeline) route of MC2 is checked only around SBH-14, SBH-19, with outcrops or boulders based on metamorphic and igneous rocks. These 2 points are candidate sites for pumping station. Other drilling points are covered with alluvium.

The Secondary Canal (Pipeline) route of MC3 is identified only around SBH-26, SBH-28, SBH-31, DBH-64 with outcrops or boulders based on metamorphic rocks.

In this investigation area, metamorphic and igneous rock-based boulders and outcrops are identified in some points, but most of the surface is covered with alluvium. The outcrops and boulder are identified around the SBH-1 of SC1 line, SBH-33 of SC3 line, SBH-10 & SBH-11 of SC5 line, intersects of Main Canal, SBH-14 of SC7 line, DBH-64 of SC-MC3-1 line, SBH-28 of SC-MC3-2 line. SBH-14, SBH-19, SBH-33 points are candidates for pumping stations.

Field Activities (Drilling)

Main Canal-1 has 5, 2nd line. The drilling holes are 13, has an elevation of 94-141m, most of which are alluvial. Among them, 4 holes (SBH-1, SBH-10, SBH-11, SBH-33) are confirmed the outcrops and boulders in surface. Compare these data to the logging, SBH-1 has weathered rock and soft rock in subsurface 0.4m-4.0m. SBH-10 has boulder (clayey gravel) in 0.7-2.0m, silty sand in 2.0m-4.0m. SBH-11 has weathered rock and soft rock in 0.7-4.0m. SBH-33 has boulder in 0.5-2.5m, 4.0-5.0m, weathered rock and soft rock in 5.0-7.0m. In these strata, SPT N value is also 55++.

For geologic condition (boulder, weathered rock, soft rock), SBH-33 couldn't do the SPT test.

Main Canal-2 has 7, 2nd line. The drilling holes are 13, has an elevation of 108-141m, most of which are alluvial. Among them, 1 hole (SBH-14) are confirmed the outcrops and boulders in surface. 3 holes (SBH-13, SBH-19) come out rock samples while drilling. Compare these data to the logging, SBH-13

has weathered rock in subsurface 0.4m-4.0m. SBH-14 has weathered rock and soft rock in 0.5-6.0m. SBH-15 has weathered rock in subsurface 1.0m-1.8m, 2.0-4.0m. SBH-19 has weathered rock in 3.0-3.5m, soft rock 3.5-7.0m. In these strata, SPT N value is also 55++. For geologic condition (weathered rock, soft rock), SBH-14 couldn't do the SPT test.

This tasks includes Main Canal-3. In the feasibility study, the results of the two holes (BH-23, BH-24) conducted on Main Canal-3 were used together. This investigation, additional two holes (DBH-64, DBH-65) were conducted on the MC3. The elevation of these holes are 96-126m. Among them, 1 hole (DBH-64) is confirmed the outcrops in surface. 1 hole (BH-23) come out rock samples while drilling. Compare these data to the logging, DBH-64 has weathered rock in subsurface 0.5m-4.0m. BH-23 has weathered rock in 0.88-2.81m. In these strata, SPT N value is also 55++.

Main Canal-3 has 5, 2nd line. The drilling holes are 7, has an elevation of 94-118m, most of which are alluvial. The two points (SBH-27, SBH-28) were excavated by hand in the form of test pits due to limited access. Among them, 3 holes (SBH-26, SBH-28, SBH-31) are confirmed the outcrops and boulders in surface. Compare these data to the logging, SBH-26 has weathered rock in subsurface 0.8m-4.0m. SBH-27 has weathered rock in 1.0-2.0m. SBH-28 has weathered rock in subsurface 1.3m-2.0m. SBH-31 has weathered rock in 0.6-4.0m. In these strata, SPT N value is also 55++(figure-13, figure-18, table-8, table-12). The test pits (SBH-27, SBH-28) couldn't do SPT.

Even though, the working period is rainy season, it is only one site checked (SBH-6), this was measured at 2m depth below surface. It can be estimated that the permeability is very high in this area.

Laboratory Test

Sieve analysis gives an interpretation of the particle size distribution, which in turn allows us to determine the quantitative composition of the sample. The material passing the 0.075mm sieve size can be classified as silt or clay, so when a sample has 75% passing the 0.075mm sieve such as SBH25 at 0.3-1.2m it can be understood that 75% of the sample is silt or clay. The determination between silt and clay is then found from the atterberg limits in the following section.

NMC of 2nd Line of MC1 is 1.2 - 23.4%. The value of the sample taken at 2m is 1.2-23.4%. The value of the sample taken at 4m is 5.6-22.3%.

NMC of 2nd Line of MC2 is 1.6 - 22.9%. The value of the sample taken at 2m is 2.2-15.8%. The value of the sample taken at 4m is 1.6-22.9%.

NMC of MC3 and 2nd Line of MC3 is 2.6 - 28.7%. The value of the sample taken at 2m is 2.6-8.9%. The value of the sample taken at 4m is 6.7-28.7%.

The test results confirm the geological data, in which alluvial sandy/silty deposits are the predominant materials found within the first 2m. This is shown through the non-plastic and slightly plastic material results which classify the samples as non-cohesive silts and sands, the remainder of the samples showed medium PI levels which would indicate presence of inorganic clays. Most of the samples have more than 50% (passing the 0.425mm sieve), further supporting the above statement of alluvial and colluvium deposits.

After the initial alluvial deposits, a competent decomposed weathered rock layer was typically found between 3 – 5m in depth. This gave good SPT and bearing capacity results as shown in above section.

Boreholes with low bearing capacity, below 150kPa (15 ton/m²), within the initial 1.5m are SBH-6, SBH-24, SBH-25, SBH-32 whereas SBH-30 showed bearing values of 77kPa (7.7 ton/m²). Although the bearing capacity of these points is relatively low, compared to other points, it has sufficient bearing capacity even for the MC3, which has the largest weight. Therefore, special ground stabilization is not

required.

The investigation period was rainy, so the permeability test was conducted in the laboratory. Thus, the K is lower than the field test. Most of the soils at boreholes are within the group of Loess Loam, with coefficient of permeability in the range of 10-3 to 10-4. Nevertheless, K in several samples is unusually low because the test domain is composed of weathered rock, silty sand, and clayey sand.

A-3 Geotechnical Survey Data

Processed SPT Results

Bearing capacity was calculated using Bowles after Mayerhof 1976, whereas friction angles were calculated using Peck et al 1953. For reference, SPT test of SBH-11 was conducted at 1.5 m, 3.0 m.

Division	Drilling	Bearing Capacity (kPa)		Friction Angle (Degrees)		SPT N	
	Point	1.5m	4.0m	1.5m	4.0m	1.5m	4.0m
<u>I1(SC1)</u>							
SC1 POINT 1	SBH-1	1,919	2,022	32	32	55++	55++
SC1 POINT 2	SBH-2	256	384	29	29	14	19
SC1 POINT 3	SBH-3	461	512	29	29	24	25
<u>12(SC2)</u>							
SC2 POINT 1	SBH-4	256	256	29	29	13	13
SC2 POINT 2	SBH-5	230	230	29	28	12	11
SC2 POINT 3	SBH-6	102	256	28	29	6	12
<u>SC2-1</u>							
SC2-1 POINT 1	SBH-7	230	333	29	29	12	16
<u>13(SC3)</u>							
SC3 POINT 1	SBH-8	435	768	30	30	23	38
<u>14(SC4)</u>							
SC4 POINT 1	SBH-9	256	742	28	30	13	37
<u>15(SC5)</u>							
SC5 POINT 1	SBH-10	1,919	2,022	32	32	55++	55++
SC5 POINT 2	SBH-11	1,919	2,022	32	32	55++	55++
SC5 POINT 3	SBH-12	384	358	29	29	20	18

[Table 0-1] MC1 Bearing & Friction Values

[Table 0-2] MC2 Bearing & Friction Values

Division	Drilling Point	-		Friction Angle (Degrees)		SPT N	
	Point	1.5m	4.0m	1.5m	4.0m	1.5m	4.0m
A1(SC6)							
SC6 POINT 1	SBH-13	384	2,022	29	32	20	55++
A2(SC7)							
SC7 POINT 1	SBH-14	-	-	-	-	-	-
SC7 POINT 2	SBH-15	1,919	870	32	30	55++	43
SC7 POINT 3	SBH-16	358	256	29	29	18	13
A3(SC8)							
SC8 POINT 1	SBH-17	230	640	29	30	12	31
SC8 POINT 2	SBH-18	307	205	29	28	16	10
A4(SC9)							

SC9 POINT 1	SBH-19	281	1,663	29	31	15	82
A5(SC10)							
SC10 POINT 1	SBH-20	230	256	29	29	12	13
A6(SC11)							
SC11 POINT 1	SBH-21	307	537	29	30	16	27
SC11 POINT 2	SBH-22	179	230	28	29	9	11
A7(SC12)							
SC12 POINT 1	SBH-23	358	409	29	29	18	20
SC12 POINT 2	SBH-24	102	307	28	29	6	15
SC12 POINT 3	SBH-25	128	154	28	28	7	7

[Table A.2-3] MC3 Bearing & Friction Values

Division	Drining		pacity (kPa) Friction (Degr		-	SP	SPT N	
	Point	1.5m	4.0m	1.5m	4.0m	1.5m	4.0m	
SC3-1								
SC3-1 POINT 1	SBH-26	1,024	2,022	31	32	54	55++	
SC3-2								
SC3-2 POINT 1	SBH-27	-	-	-	-	-	-	
SC3-2 POINT 2	SBH-28	-	-	-	-	-	-	
SC3-3								
SC3-3 POINT 1	SBH-29	512	486	29	29	26	24	
SC3-3 POINT 2	SBH-30	77	461	27	29	4	23	
SC3-4								
SC3-4 POINT 1	SBH-31	1,919	2,022	32	32	55++	55++	
SC3-5								
SC3-5 POINT 1	SBH-32	102	128	28	28	6	6	

Sieve Analysis

[Table A.2-4] MC1 Sieve Analysis

Berchele ID	Depth	% Material Passing Sieve Size				
Borehole ID	(m)	2.36mm	0.425mm	0.075mm		
DBH64	0.3-1.7	100	95	44		
DBH65	2.0-3.2	100	93	60		
SBH1	0.5 - 1.5	92	78	60		
SBH2	3.5 - 4.0	85	54	21		
SBH3	0.3 - 1.8	98	70	21		
SBH3	2.4- 3.0	98	30	11		
SBH4	0.5 - 1.6	100	82	33		
SBH4	2.8 - 4.0	96	61	18		
SBH5	0.1 - 2.1	100	90	52		
SBH5	2.4 - 3.4	96	90	59		
SBH6	0.3 - 1.1	100	86	50		
SBH6	2.0 - 4.0	94	80	48		
SBH7	0.3 - 1.3	99	86	50		
SBH7	2.3 - 3.5	99	86	42		
SBH8	0.6 - 1.2	100	84	38		
SBH8	2.2 - 3.3	95	69	27		
SBH9	0.5 - 1.0	99	82	32		
SBH9	2.6 - 3.4	80	63	31		
SBH10	0.7 - 1.0	60	42	20		
SBH10	2.0 - 3.0	99	64	21		
SBH11	0.0 - 0.9	83	63	38		
SBH11	0.9 - 4.0	100	60	19		
SBH12	0.2 - 1.2	100	78	43		
SBH12	2.0 - 3.0	96	86	49		

[Table A.2-5] MC2 Sieve Analysis

Borehole ID	Depth	% Material Passing Sieve Size				
Borenole ID	(m)	2.36mm	0.425mm	0.075mm		
SBH13	0.0 - 0.4	92	85	54		
SBH13	0.4 - 0.3	90	67	39		
SBH14	0.6 - 1.1	46	32	8		
SBH14	2.0 - 3.0	95	67	33		
SBH15	0.4 - 1.0	96	74	32		
SBH15	1.0 - 1.8	85	67	26		
SBH16	0.9 - 1.3	100	71	44		
SBH16	2.5 - 3.4	97	61	21		
SBH17	0.0 - 0.8	99	53	15		
SBH17	0.8 - 3.7	97	46	3		

Korea Rural Community Corporation 🗈 DASAN CONSULTANTS 🛟 ISAN

SBH18	1.2 - 2.3	100	91	36
SBH18	2.3 - 4.0	100	40	14
SBH19	0.2 - 1.1	100	69	61
SBH19	2.0 - 3.0	92	74	45
SBH20	0.5 - 1.8	99	52	4
SBH20	1.8 - 4.0	98	40	5
SBH21	0.3 - 1.4	100	78	62
SBH21	2.3 - 3.8	95	46	10
SBH22	0.9 - 2.5	100	97	41
SBH22	2.5 - 4.0	99	56	14
SBH23	0.3 - 1.3	100	76	44
SBH23	2.5 - 3.8	95	47	10
SBH24	0.4 - 1.3	100	44	23
SBH24	1.3 - 4.0	99	23	4
SBH25	0.3 - 1.2	100	94	75
SBH25	1.2 - 4.0	99	45	8

[Table A.2-6] MC3 Sieve Analysis

Developing ID	Depth	% Material Passing Sieve Size				
Borehole ID	(m)	2.36mm	0.425mm	0.075mm		
SBH26	0.3 - 0.8	52	34	20		
SBH26	0.8 - 2.0	90	55	26		
SBH27	0.4 - 1.0	78	55	37		
SBH27	1.0 - 2.0	95	69	7		
SBH28	0.9 - 1.2	95	80	50		
SBH28	1.2 - 2.0	83	52	30		
SBH29	0.4 - 1.0	100	87	67		
SBH29	1.0 - 3.0	98	84	54		
SBH30	0.2 - 1.0	99	38	4		
SBH30	2.0 - 3.0	99	41	5		
SBH31	0.6 - 1.0	79	47	18		
SBH31	2.0 - 3.0	100	76	17		
SBH32	0.1 - 1.1	100	90	67		
SBH32	2.9 - 4.0	99	91	54		
SBH33	0.4 - 1.2	72	50	30		
SBH33	1.2 - 3.0	89	64	31		
DBH64	0.5 - 1.0	88	51	27		
DBH65	0.3 - 1.7	100	95	44		
DBH65	2.0 - 3.2	100	93	60		

Atterberg Limits

[Table A.2-7] MC1 Atterberg Limits

Borehole ID	Depth		Atterberg Limits	
Borenole ID	(m)	LL %	PI	LS %
DBH64	0.3-1.7	SP	PS	1.4
DBH65	2.0-3.2	NP	NP	0.0
SBH1	0.5 - 1.5	NP	NP	0.0
SBH2	3.5 - 4.0	NP	NP	0.0
SBH3	0.3 - 1.8	NP	NP	0.0
SBH3	2.4- 3.0	NP	NP	0.0
SBH4	0.5 - 1.6	SP	S	0.7
SBH4	2.8 - 4.0	NP	NP	0.0
SBH5	0.1 - 2.1	32	17	7.9
SBH5	2.4 - 3.4	31.8	14	7.9
SBH6	0.3 - 1.1	28.2	12	7.1
SBH6	2.0 - 4.0	24	14	8.6
SBH7	0.3 - 1.3	30	13	7.1
SBH7	2.3 - 3.5	29	15	7.1
SBH8	0.6 - 1.2	29	11	5.7
SBH8	2.2 - 3.3	SP	SP	2.9
SBH9	0.5 - 1.0	SP	SP	2.1
SBH9	2.6 - 3.4	28	14	5.7
SBH10	0.7 - 1.0	SP	SP	2.9
SBH10	2.0 - 3.0	SP	SP	1.4
SBH11	0.0 - 0.9	41	20	12.1
SBH11	0.9 - 4.0	NP	NP	0.0
SBH12	0.2 - 1.2	NP	NP	0.0
SBH12	2.0 - 3.0	32	14	14.0

[Table A.2-8] MC2 Atterberg Limits

Borehole ID	Depth (m)	Atterberg Limits		
		LL %	PI	LS %
SBH13	0.0 - 0.4	32.6	21	7.1
SBH13	0.4 - 0.3	SP	SP	1.4
SBH14	0.6 - 1.1	NP	NP	0.0
SBH14	2.0 - 3.0	NP	NP	0.0
SBH15	0.4 - 1.0	NP	NP	0.0
SBH15	1.0 - 1.8	SP	SP	1.4
SBH16	0.9 - 1.3	31	15	7.1
SBH16	2.5 - 3.4	NP	NP	0.0

SBH17	0.0 - 0.8	NP	NP	0.0
SBH17	0.8 - 3.7	NP	NP	0.0
SBH18	1.2 - 2.3	NP	NP	0.0
SBH18	2.3 - 4.0	NP	NP	0.0
SBH19	0.2 - 1.1	NP	NP	0.0
SBH19	2.0 - 3.0	30	14	7.7
SBH20	0.5 - 1.8	NP	NP	0.0
SBH20	1.8 - 4.0	NP	NP	0.0
SBH21	0.3 - 1.4	NP	NP	0.0
SBH21	2.3 - 3.8	NP	NP	0.0
SBH22	0.9 - 2.5	NP	NP	0.0
SBH22	2.5 - 4.0	NP	NP	0.0
SBH23	0.3 - 1.3	NP	NP	0.0
SBH23	2.5 - 3.8	26	9	4.5
SBH24	0.4 - 1.3	NP	NP	0.0
SBH24	1.3 - 4.0	NP	NP	0.0
SBH25	0.3 - 1.2	32.6	21	7.1
SBH25	1.2 - 4.0	SP	SP	1.4

[Table A.2-9] MC3 Atterberg Limits

Borehole ID	Depth (m)	Atterberg Limits		
		LL %	PI	LS %
SBH26	0.3 - 0.8	30	13	7.1
SBH26	0.8 - 2.0	NP	NP	0.0
SBH27	0.4 - 1.0	41	22	10.7
SBH27	1.0 - 2.0	SP	SP	2.9
SBH28	0.9 - 1.2	33	18	10.7
SBH28	1.2 - 2.0	NP	NP	0.0
SBH29	0.4 - 1.0	41	19	10.7
SBH29	1.0 - 3.0	SP	SP	4.3
SBH30	0.2 - 1.0	36	17	7.1
SBH30	2.0 - 3.0	41.8	21	10.7
SBH31	0.6 - 1.0	NP	NP	0.0
SBH31	2.0 - 3.0	NP	NP	0.0
SBH32	0.1 - 1.1	NP	NP	0.0
SBH32	2.9 - 4.0	47	23	7.9
SBH33	0.4 - 1.2	SP	SP	2.9
SBH33	1.2 - 3.0	SP	SP	0.7
DBH64	0.5 - 1.0	SP	SP	1.4
DBH65	0.3 - 1.7	SP	SP	2.1
DBH65	2.0 - 3.2	NP	NP	0.0

Korea Rural Community Corporation 🗈 DASAN CONSULTANTS 🛟 ISAN

Specific Gravity

[Table A.2-10] MC1 Specific Gravity

Borehole ID	Depth (m)	Specific Gravity		
DBH64	0.3-1.7	2.320		
DBH65	2.0-3.2	2.056		
SBH1	0.5 - 1.5	3.215		
SBH2	3.5 - 4.0	3.236		
SBH3	0.3 - 1.8	2.552		
SBH3	2.4- 3.0	3.149		
SBH4	0.5 - 1.6	2.780		
SBH4	2.8 - 4.0	2.989		
SBH5	0.1 - 2.1	2.667		
SBH5	2.4 - 3.4	2.633		
SBH6	0.3 - 1.1	2.669		
SBH6	2.0 - 4.0	2.788		
SBH7	0.3 - 1.3	2.152		
SBH7	2.3 - 3.5	2.981		
SBH8	0.6 - 1.2	2.169		
SBH8	2.2 - 3.3	2.493		
SBH9	0.5 - 1.0	2.018		
SBH9	2.6 - 3.4	2.519		
SBH10	0.7 - 1.0	2.965		
SBH10	2.0 - 3.0	3.044		
SBH11	0.0 - 0.9	1.975		
SBH11	0.9 - 4.0	3.662		
SBH12	0.2 - 1.2	2.896		
SBH12	2.0 - 3.0	2.447		

[Table A.2-11] MC2 Specific Gravity

Borehole ID	Depth (m)	Specific Gravity		
SBH13	0.0 - 0.4	2.384		
SBH13	0.4 - 0.3	2.475		
SBH14	0.6 - 1.1	2.927		
SBH14	2.0 - 3.0	3.614		
SBH15	0.4 - 1.0	2.462		
SBH15	1.0 - 1.8	2.447		
SBH16	0.9 - 1.3	2.243		
SBH16	2.5 - 3.4	2.367		
SBH17	0.0 - 0.8	2.571		
SBH17	0.8 - 3.7	3.174		

SBH18	1.2 - 2.3	2.221		
SBH18	2.3 - 4.0	2.195		
SBH19	0.2 - 1.1	1.992		
SBH19	2.0 - 3.0	2.310		
SBH20	0.5 - 1.8	2.32		
SBH20	1.8 - 4.0	3.165		
SBH21	0.3 - 1.4	2.268		
SBH21	2.3 - 3.8	2.602		
SBH22	0.9 - 2.5	2.622		
SBH22	2.5 - 4.0	2.249		
SBH23	0.3 - 1.3	2.916		
SBH23	2.5 - 3.8	2.863		
SBH24	0.4 - 1.3	2.521		
SBH24	1.3 - 4.0	2.491		
SBH25	0.3 - 1.2	3.558		
SBH25	1.2 - 4.0	2.305		

[Table A.2-12] MC3 Specific Gravity

Borehole ID	Depth (m)	Specific Gravity		
SBH26	0.3 - 0.8	2.472		
SBH26	0.8 - 2.0	2.426		
SBH27	0.4 - 1.0	2.223		
SBH27	1.0 - 2.0	2.931		
SBH28	0.9 - 1.2	2.417		
SBH28	1.2 - 2.0	2.185		
SBH29	0.4 - 1.0	2.319		
SBH29	1.0 - 3.0	2.326		
SBH30	0.2 - 1.0	2.711		
SBH30	2.0 - 3.0	2.099		
SBH31	0.6 - 1.0	2.147		
SBH31	2.0 - 3.0	2.171		
SBH32	0.1 - 1.1	2.171		
SBH32	2.9 - 4.0	2.447		
SBH33	0.4 - 1.2	2.333		
SBH33	1.2 - 3.0	2.298		
DBH64	0.5 - 1.0	2.320		
DBH65	0.3 - 1.7	2.353		
DBH65	2.0 - 3.2	2.056		

Permeability

[Table A.2-13] MC1 Permeability

Borehole ID	Depth (m)	Permeability	
SBH1	0.5 - 1.5	3.99 X 10 ⁻⁶	
SBH2	3.5 - 4.0	3.99 X 10 ⁻⁶	
SBH3	0.3 - 1.8	2.31 X 10 ⁻⁴	
SBH4	2.4- 3.0	6.43 X 10 ⁻⁵	
SBH5	0.5 - 1.6	2.25 X 10 ⁻⁴ 2.49 X 10 ⁻⁴ 1.67 X 10 ⁻⁴	
SBH6	2.0 - 4.0		
SBH7	2.3 - 3.5		
SBH8	2.2 - 3.3	1.19 x 10 ⁻⁵	
SBH9	0.3 - 1.1	7.77 X 10 ⁻⁶	
SBH10	2.0 - 4.0	4.18 X 10 ⁻⁵	
SBH11	0.3 - 1.3	1.42 X 10 ⁻⁵	
SBH12	2.3 - 3.5	8.96 X 10 ⁻⁶	

[Table A.2-14] MC2 Permeability

Borehole ID	Depth (m)	Permeability		
SBH13	0.4 - 3.0	8.96 X 10 ⁻⁶		
SBH14	2.0 - 3.0	8.89 X 10 ⁻⁵		
SBH15	1.0 - 1.8	3.16 X 10 ⁻⁴		
SBH16	2.5- 3.4	2.49 X 10 ⁻⁴		
SBH17	0.8 - 3.7	2.70X 10 ⁻⁴		
SBH18	2.0 - 4.0	4.92 X 10 ⁻⁴		
SBH19	2.0 - 3.0	1.21 X 10 ⁻⁵ 2.58 X 10 ⁻³		
SBH20	1.8 - 4.0			
SBH21	2.3 - 3.8	2.58 X 10 ⁻³		
SBH22	2.0 - 4.0	6.13 X 10 ⁻⁴		
SBH23	2.3 - 3.8	2.58 X 10 ⁻³		
SBH24	1.3 - 4.0	3.32 X 10 ⁻³		
SBH25	1.2 - 4.0	3.31 X 10 ⁻³		

[Table A.2-15] MC3 Permeability

Borehole ID	Depth (m)	Permeability		
SBH26	0.8 - 2.0	4.56 X 10 ⁻⁶		
SBH27	1.0 - 2.0	2.10 X 10 ⁻⁷		
SBH28	1.2 - 2.0	2.35 X 10 ⁻⁴		
SBH29	1.0 - 3.0	1.84 X 10 ⁻⁵		
SBH30	2.0 - 3.0	2.96 X 10 ⁻³		

SBH31	2.0 - 3.0	1.22 X 10 ⁻⁴	
SBH32	2.9 - 4.0	1.05 X 10 ⁻³	
SBH33	1.2 - 3.0	3.31 X 10 ⁻⁴	

SEOCONSU PROJECT NUM PROJECT NAM CLIENT KRC -	IBER S	P		DIAM			COORDINATES 36K 0 688 975 , 8 227 467 COORD SYS UTM TOTAL DEPTH 4.0m
Comments: No	water p	present	after 24h				LOGGED BY G.K. CHECKED BY M. Sabelli
Drilling Method	ROD %	% Recovered	SPT	Water Level	Depth (m)	Graphic Log	Material Description
PERCUSSIVE					0.2		Top Soil
					0.4	1. p. p. 1. p. 1.	CG - Clayey Gravel
					0.6	<u>-A - 2 - 2 - A</u>	GM (Weathered Rock)
		1	55++ PEN 110mm		- 1.2		
ROTARY WASH AND BORE]	- 1.6		
					-2		
					-2.2		
					- 2.6		
					- 2.8		
					- 3.2		
					- 3.4		
					3.6		
			55++ PEN 50mm		F.		

GEOCONSU PROJECT NUM PROJECT NAM CLIENT KRC - I	BER S	Р		COM	100000		COORDINATES 36K 0 688 112, 8 225 015 COORD SYS UTM TOTAL DEPTH 4.0m
Comments: Wa	iter enc	ountere	ed at 4.0m. No wate	er prese	ent after	24h	LOGGED BY G.K. CHECKED BY M. Sabelii
Drilling Method	ROD %	% Recovered	ы	Water Level >24h	Depth (m)	Graphic Log	Material Description
PERCUSSIVE					0.2		MC - Top Soil SC - Clayey Sand
					- 0.4		
					- 0.8		
					-1.2		GM - Silty Gravel
					- 1.4	10.00 10.00 10.00 10.00 10.00 10.00	
			/10,8,6 \		- 1.8	10 10 10 10 10 10 10 10 10 10 10 10 10 1	
					- 2.2	10 - 20 - 10 - 10 - 10 - 10 - 10 - 10 -	
					- 2.6		MC - Silty Clay
					- 2.8	1 () (
					3.2		
					- 3.6	1.000 000 000 000 0000 0000 0000 0000 0	GM - Silty Gravel
			/+0.41.0		- 3.8	0.00000	
			/10,11,8		F.	5 2 20 68 6 2	Termination Depth at: 4.0 m

				BOF	REHO	DLE LOG SVTP	- SBH03		
ROJECT NUN	DCONSULT JECT NUMBER SBH03 JECT NAME SVTP INT KRC - ISAN - DASAN						COORDINATES 36K 0 691 598 , 8 222 487 COORD SYS UTM TOTAL DEPTH 4.0m		
omments: No	water e	encount	tered at 4.0m.				LOGGED BY G.K. CHECKED BY M. Sabelli		
Drilling Method	ROD %	% Recovered	SPT	Water Level >24h	Depth (m)	Graphic Log	Material Description		
			/15,12,12		0.2 0.4 0.6 0.8 1 1.2 1.4 1.4 1.6 1.8 2 2.2 2.2 2.4		SC - Clayey Sand GM - Silty Sand MC - Clayey Sand		
			√15,10,15		2.8 3.2 3.4 3.6 3.8	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	GM - Silty Gravel Termination Depth at: 4.0 m		

Ľ

BOREHOLE LOG SVTP - SBH04

PROJECT NUN PROJECT NAN CLIENT KRC -	E SVT	P	I	COM			COORDINATES 36K 0 691 019 , 8 223 050 COORD SYS UTM TOTAL DEPTH 4.0m		
Comments: No	water (encoun	tered at 4.0m.				LOGGED BY G.K. CHECKED BY M. Sabelli		
Drilling Method	ROD %	% Recovered	891	Water Level >24h	Depth (m)	Graphic Log	Material Description		
PERCUSSIVE			5,7,6		0.2 0.4 0.6 0.8 1 1.2 1.2 1.4 1.4 1.6 2 2.2 2.4 2.6 2.8 3.3 3.2 3.4 3.6 3.8		SM - Top Soil SC - Clayey Sand SM - Silty Sand SC - Clayey Sand		

Demments: Water encountered at 2.0m. No water encountered after 24h. LOGGED BY G.K. CHECKED BY M. Sc poon)elli
BRCUSSIVE SC - Top Soll 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.2 0.4 0.8 0.8 1 1.2 1.4 1.6 2.2 0.4 2.2 0.4 2.2 0.4 2.2 0.4 2.2 0.4 2.2 0.4 2.2 0.4 2.2 0.4 2.2 0.4 2.2 0.4 2.2 0.4 2.2 0.4 2.2 0.4 2.4 0.5	
PRCUSSIVE SC - Top Soll 0.2 0.4 0.6 0.8 1 1.2 1.4 1.4 1.8 1.8 2.2 2.4 2.2 0.4 0.5 0.8 1.1 1.2 1.4 1.8 2.2 0.4 2.2 0.4 2.2 0.4 2.2 0.4 2.2 0.4 2.2 0.4 2.2 0.4 2.2 0.4 2.2 0.4 2.2 0.4 2.2 0.4 2.2 0.4 2.2 0.4 2.2 0.4 2.2 0.4 2.2 0.4 2.2 0.4	ription
4.5.7 4.	
4.5.7 4.5.7 4.5.7 4.5.7 4.5.7 4.5.7 4.5.7 4.5.7 4.5.7 4.5.7 4.5.7 4.5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7	
4.5.7 4.5.7 4.5.7 4.5.7 4.5.7 4.5.7 4.5.7 4.5.7 4.5.7 4.5.7 4.5.7 4.5.7 5.5. Clayey Sand	
4.5.7 4.5.7 4.5.7 4.5.7 4.5.7 4.5.7 4.5.7 4.5.7 4.5.7 5.5. Clayey Sand	
4.5.7 4.5.7 4.5.7 4.5.7 4.5.7 4.5.7 4.5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7	
4.5.7 -1.4 -1.4 -1.6 -1.8 -2.2 -2.2 -2.4 -1.6 -1.8 -2.2 -2.2 -2.4 -2.2 -2.4 -2.2 -2.4 -2.2 -2.4	
4.5.7 - 1.6 - 1.8 - 2 - 2.2 - 2.4 - 2.4 - 2.4 - 2.2 - 2.4 - 2.4 - 2.2 - 2.4 - 2.2 - 2.4 - 2.2 - 2.4 - 2.5 - 2.	
4.5.7 - 1.8 - 2 - 2.2 - 2.2 - 2.4 - 2.4 - 2.2 - 2.4 - 2.4 - 2.2 - 2.4 - 2.2 - 2.4 - 2.5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	
4.5.7 2 2.2 2.4 SC - Clayey Sand	
2 ML - SiIT 2.2 SC - Clayey Sand	
2.2 2.4 SC - Clayey Sand	
SC - Clayey Sand	
2.6	
3.4 MC - Silty Clay	
3.6	
4.5.6	

BOREHOLE LOG SVTP - SBH06 CONSUL COORDINATES 36K 0 690 283 , 8 219 658 PROJECT NUMBER SBH06 DRILLING DATE 19-03-2021 PROJECT NAME SVTP COORD SYS UTM COMPLETION 19-03-2021 CLIENT KRC - ISAN - DASAN DIAMETER 150 TOTAL DEPTH 4.0m CASING Steel Comments: Water encountered at 2.5m. Water measured at 2.0m after 24h. LOGGED BY G.K. CHECKED BY M. Sabelli >24h **Drilling Method** % Recovered Level Ē Graphic Log Material Description ROD % Water Depth SPT PERCUSSIVE SC - Top Soil 0.2 SM - Silty Sand 0.4 0.6 0.8 1 CM - Silty Clay 1.2 1.4 1.6 1.8 4,3,3 2 SC - Clayey Sand 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4,5,7 Termination Depth at: 4.0 m

DASAN CONSULTANTS

C ISAN

Korea Rural Community Corporation

GEOCONSU	IT								
PROJECT NUN PROJECT NAN CLIENT KRC -	IBER S	Р	i.	COM			COORDINATES 36K 0 690 442 , 8 217 834 COORD SYS UTM TOTAL DEPTH 4.0m		
comments: No	water (encoun	tered after 24h.				LOGGED BY G.K. CHECKED BY M. Sabelli		
Drilling Method	ROD %	% Recovered	SPT	Water Level >24h	Depth (m)	Graphic Log	Material Description		
PERCUSSIVE			8,6,6		0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.2 2.4 2.6 3 3.2 3.4 3.6 3.6 3.8		SC - Top Soil ML - Silty Clay GC - Clayey Gravel SM - Silty Sand GC - Clayey Gravel		
			8.8.8		E	ff the			

EOCONSU ROJECT NUN ROJECT NAN LIENT KRC -	MBER S	Р	ı	COM			COORDINATES 36K 0 687 758 , 8 223 862 COORD SYS UTM TOTAL DEPTH 4.0m		
omments: No	o water	measur	ed after 24h.				LOGGED BY G.K. CHECKED BY M. Sabelli		
Dulling Method	Rap %	% Recovered	SPT	Water Level >24h	Depth (m)	Graphic Log	Material Description		
			10,11,12		0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 2 2.2 2.4 2.4 2.6 2.8 3.2 3.4 3.6 3.6 3.8 3.8		ML - Silly Sand GM - Silly Gravel SM - Silly Sand SC - Clayey Sand		

EOCONSU ROJECT NUN ROJECT NAN LIENT KRC -	IBER S	Р		COM			COORDINATES 36K 0 687 302 , 8 221 555 COORD SYS UTM TOTAL DEPTH 4.0m		
omments: No	water i	measur	ed after 24h.				LOGGED BY G.K. CHECKED BY M. Sabelli		
Drilling Method	ROD %	% Recovered	SPT	Water Level >24h	Depth (m)	Graphic Log	Material Description		
			√ 5,6,7		0.2 0.4 0.6 1 1.2 1.4 1.6 2.2 2.2 2.2 2.2 2.4 2.6 3.2 3.4 3.6 3.6 3.8		SC - Clayey Sand		
			14,15,22		ŧ.	/////			

ROJECT NAME S	- DASAN	97	DIAM			COORDINATES 36K 0 686 231, 8 218 896 COORD SYS UTM TOTAL DEPTH 4.0m		
comments: No wat	er measur	ed after 24h.	RAN			LOGGED BY G.K. CHECKED BY M. Sabelli		
Drilling Method RoD %	% Recovered	Tds	Water Level >24h	Depth (m)	Graphic Log	Material Description		
Rotary Wash and Bore		38, 55++ PEN 120MM		0.2 0.4 0.6 1.2 1.4 1.6 1.6 2.2 2.2 2.4 2.6 2.8 3.2 3.6 3.6 3.6 3.8		GM - Silty Gravel GC - Clayey Gravel SM - Silty Sand		

SEOCONSU PROJECT NUN PROJECT NAN CLIENT KRC -	BER S	р	8	DIAM			COORDINATES 36K 0 686 821 , 8 220 393 COORD SYS UTM TOTAL DEPTH 3.0m		
Comments: No	water i	neasun	ed after 24h.				LOGGED BY G.K. CHECKED BY M. Sabelli		
Drilling Method	RQD %	% Recovered	spt	Water Level >24h	Depth (m)	Graphic Log	Material Description		
Rotary Wash and Bore			36, 55++ PEN 130MM 39, 55++ PEN 110MM		0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.2 2.4 2.6 3 3.2 3.4 3.6 3.8		CL - Top Soll GM - Silly Gravel GC - Weathered Rock		
					F.		Termination Depth at: 3.0 m		

PROJECT NUME PROJECT NAME CLIENT KRC - IS	E SVT	P		DIAM			COORDINATES 36K 0 688 753 , 8 220 220 COORD SYS UTM TOTAL DEPTH 4.0m		
Comments: No	water r	neasur	ed after 24h.				LOGGED BY G.K. CHECKED BY M. Sabelli		
Drilling Method	ROD %	% Recovered	SPT	Water Level >24h	Depth (m)	Graphic Log	Material Description		
PERCUSSIVE			7.9,11		0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.2 2.4 2.6 3 3.2 3.4 3.6 3.8		SC - Top Soll SM - Silty Sand GM - Silty Gravel MC - Clayey Silty SM - Silty Sand		

SEOCONSU PROJECT NUN PROJECT NAN CLIENT KRC -	IBER S	P		COM			COORDINATES 36K 0 683 696 , 8 214 010 COORD SYS UTM TOTAL DEPTH 4.0m		
Comments: No	water	measur	ed after 24h.				LOGGED BY G.K. CHECKED BY M. Sabelli		
Drilling Method	RQD %	% Recovered	SPT	Water Level >24h	Depth (m)	Graphic Log	Material Description		
PERCUSSIVE					- 0.2		CM - Top Soil		
Rotary Wash			<u>√10,10,10</u>		0.6 0.8 1 1.2 1.4 1.6 2.2 2.2 2.4 2.6 2.8 3		SM - Weathered Rock		
Rotary Wash			23,42,55++ PEN 120MM		3.2		SS - HEARIEIGU NUUK		

GEOCONSU)			BOR	REHO	DLE LOG SVTP	- SBH14		
PROJECT NUN PROJECT NAN CLIENT KRC -	MBER S	P		DIAM			COORDINATES 36K 0 682 873 , 8 214 057 COORD SYS UTM TOTAL DEPTH 6.0m		
Comments: No	o water	measured	after 24h.				LOGGED BY G.K. CHECKED BY M. Sabelli		
Drilling Method	RQD %	% Recovered	SPT	Water Level >24h	Depth (m)	Graphic Log	Material Description		
PERCUSSIVE					E		CL - Top Soil GC - Clayey Gravel		
					0.5	ナチンチ	GG - Glayey Grave		
					1		GC - Weathered Rock		
ROTARY CORING	0%	77.8%					GC - Fractured Weathered Rock		
					1.5				
	0%	35%			2				
					2.5				
WASH AND BORE					3				
					3.5				
ROTARY CORING	0%	0%			4		No Recovery		
					4.5				
					5				
					5.5				
					Ē		Termination Depth at. 6.0 m		

SEOCONSU PROJECT NUM PROJECT NAM CLIENT KRC -	BER S	P		COM			COORDINATES 36K 0 680 488 , 8 216 101 COORD SYS UTM TOTAL DEPTH 4.0m		
Comments: No	water	measur	ed after 24h.				LOGGED BY G.K. CHECKED BY M. Sabelli		
Drilling Method	RQD %	% Recovered	SPT	Water Level >24h	Depth (m)	Graphic Log	Material Description		
PERCUSSIVE					-0.2		SC - Top Soll		
					0.6		CL - Clay		
					-1		GC - Weathered Rock		
			30, 55++ PEN: 130MM		- 1.6		S - Sand		
					-2.2		GC - Weathered Rock		
					2.6				
					- 3.2				
					3.6				
		<u> </u>	14, 18, 25	-	ŧ+		Termination Depth at: 4.0 m		

GEOCONSU PROJECT NUM PROJECT NAM CLIENT KRC -	BER S	Р	1	DIAM	PLETIO		COORDINATES 36K 0 677 858 , 8 216 838 COORD SYS UTM TOTAL DEPTH 4.0m		
Comments: No	water	measur	ed after 24h	CASI	NG Ste		LOGGED BY G.K.		
			2010-114 2		_		CHECKED BY M. Sabelli		
Drilling Method	ROD %	% Recovered	5PT	Water Level >24h	Depth (m)	Graphic Log	Material Description		
PERCUSSIVE					:		SC - Top Soil		
					- 0.2	1////	MC - Silty Clay		
					-0.4	11/1/A			
					Ē	XXXX			
					- 0.6	11/1/1			
					-0.8	11/1/1			
					Ē-1	/////	SC - Clayey Sand		
					-1.2	////			
					E	1111	GC - Clayey Sand		
					- 1.4		So - Glayey Sand		
					- 1.6				
					- 1.8	////			
			7.8.10		E				
			11.0.10	1	-2	1111			
					- 2.2	a Borga	GM - Silty Gravel		
					-2.4	1000000			
					Ē.	10000	SC - Clayey Sand		
					-26	/////			
					2.8	////			
					-3				
					- 3.2				
					-	////			
					- 3.4	MAN	MC - Silty Clay		
					- 3.6	1/1/1			
					- 3.8				
			4,6,7		E	1/1/1			

BOREHOLE LOG SVTP - SBH17 GEOCONSULT PROJECT NUMBER SBH17 DRILLING DATE 21-03-2021 COORDINATES 36K 0 682 358 , 8 212 888 PROJECT NAME SVTP **COMPLETION 21-03-2021** COORD SYS UTM CLIENT KRC - ISAN - DASAN DIAMETER 150 TOTAL DEPTH 4.0m CASING Steel LOGGED BY G.K. Comments: No water measured after 24h. CHECKED BY M. Sabelli Water Level >24h **Drilling Method** % Recovered Ē Graphic Log Material Description ROD % Depth 5p1 PERCUSSIVE SC - Top Soil 0.2 0.4 0.6 0.8 SW - Sand 1 1.2 1.4 1.6 1.8 4, 6, 6 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 GP - Silty Gravel 3.8 17. 18. 13 Termination Depth at: 4.0 m

OCONSU DJECT NUM DJECT NAM ENT KRC -	BER S	P		DIAM	1000		COORDINATES 36K 0 660 822 , 8 213 144 COORD SYS UTM TOTAL DEPTH 4.0m		
nments: No	water r	neasur	ed after 24h.				LOGGED BY G.K. CHECKED BY M. Sabelli		
Drilling Method	RQD %	% Recovered	ъ	Water Level >24h	Depth (m)	Graphic Log	Material Description		
RCUSSIVE			12, 8, 8		0.2 0.4 0.6 1.2 1.4 1.6 2.2 2.4 2.6 2.6 3.3 3.2 3.4 3.6 3.8		SC - Clayey Sand CL - Clay SM - Silly Sand SW - Sand		
			4, 5, 5		E.		Termination Depth at: 4.0 m		

NASH AND BORE 0% 100% 0% 100% 0% 100% 0% <th>ROJECT NUM ROJECT NAM LIENT KRC -</th> <th>P</th> <th></th> <th>COM</th> <th></th> <th></th> <th colspan="3">COORDINATES 36K 0 679 312 , 8 211 904 COORD SYS UTM TOTAL DEPTH 7.2m</th>	ROJECT NUM ROJECT NAM LIENT KRC -	P		COM			COORDINATES 36K 0 679 312 , 8 211 904 COORD SYS UTM TOTAL DEPTH 7.2m		
PERCUSSIVE Image: Second	omments: N	o water i	measure	d after 24h.					
NASH AND BORE 0% 100% ROTARY CORING 0% 100% 0% 100% 13% 100%	Drilling Method	RQD %		LdS	Water Level >24h	Depth (m)	Graphic Log	Material Description	
NASH AND DORE 0% 100% 23, 33, 49 -0.5 -1 -1.5 -2 -7 0% 0% 100% -23, 33, 49 -4.5 -5 -6 -6 -6 -6.5 -6<	PERCUSSIVE					E			
MASH AND BORE 0% 100% 23, 33, 49 4 5 6 6 7 6 7 6 7 7 6 7 <th7< th=""> <th7< td="" th<=""><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td>CL - Clay</td></th7<></th7<>						1		CL - Clay	
MASH AND BORE O% 100% 23, 33, 49 GP - Weathered Rock 0% 70% 4 6				/5, 5, 10		-2.5	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	GP - Silty Gravel	
ROTARY CORING 0% 100% 23, 33, 49 4 24 25, 25 C, 25, 51 GP - Fractured Rock 0% 70% -4.5 -4.5 -4.5 -6.5 <	WASH AND BORE					Ē		GP - Weathered Rock	
0% 70% 0% 70% 0% 100% 13% 100%		0%	100%	/23, 33, 49		-3.5		GP - Fractured Rock	
0% 100% 13% 100%		0%	70%			Ē		GP - Fractured Weathered Rock	
0% 100% 6 6 13% 100% 6 5.5 GP - Soft to Hard Fractured Weathered Rock						E			
13% 100% GP - Soft to Hard Fractured Weathered Rock		0%	100%						
		13%	100%			6.5		GP - Soft to Hard Fractured Weathered Rock	
L 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.						7			

EOCONSULT ROJECT NUMBER SBH20 ROJECT NAME SVTP LIENT KRC - ISAN - DASAN				DRILLING DATE 24-03-2021 COMPLETION 24-03-2021 DIAMETER 150 CASING Steel			COORDINATES 36K 0 682 473 , 8 210 901 COORD SYS UTM TOTAL DEPTH 4.0m		
mments: N	o water	measur	ed after 24h.				LOGGED BY G.K. CHECKED BY M. Sabelli		
Drilling Method	RQD %	% Recovered	SPT	Water Level >24h	Depth (m)	Graphic Log	Material Description		
			<u>5, 5, 7</u>		0.2 0.4 0.6 0.8 1 1.2 1.2 1.4 1.6 1.8 2 2.2 2.2 2.2 2.4 2.6 3 3.2 3.2 3.4		S - Sand		
			5, 6, 7		- 3.6				

EOCONSU	т			BOF	REHO	DLE LOG SVTP	- SBH21		
ROJECT NUMBER SBH21 ROJECT NAME SVTP LIENT KRC - ISAN - DASAN				COM			COORDINATES 36K 0 682 582 , 8 209 353 COORD SYS UTM TOTAL DEPTH 4.0m		
omments: No	water r	neasun	ed after 24h.				LOGGED BY G.K. CHECKED BY M. Sabelli		
Drilling Method	ROD %	% Recovered	Lds	Water Level >24h	Depth (m)	Graphic Log	Material Description		
ERCUSSIVE			<u>/11, 8, 8</u>		0.2 0.4 0.6 1 1.2 1.4 1.6 2 2.2 2.4 2.6 2.8 3.2 3.2 3.4 3.6 3.8		CL - Top Soil CM - Silty Clay SM - Silty Sand S - Sand GC - Clayey Gravel		
			/12, 13, 14		Ē+	661.20	Termination Depth at: 4.0m		

ROJECT NUMBER SBH22 ROJECT NAME SVTP LIENT KRC - ISAN - DASAN				DRILLING DATE 20-03-2021 COMPLETION 20-03-2021 DIAMETER 150 CASING Steel			COORDINATES 36K 0 686 061, 8 210 201 COORD SYS UTM TOTAL DEPTH 4.0m		
omments: Wa	ater enc	ountere	d at 4.0m. No wate	r meas	ured aft	ler 24h.	LOGGED BY G.K. CHECKED BY M. Sabelii		
Drilling Method	ROD %	% Recovered	sPT	Water Level >24h	Depth (m)	Graphic Log	Material Description		
			<u>/4, 4, 5</u>		0.2 0.4 0.6 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.2 2.4 2.6 3.3 3.7 3.4 3.6 3.8		CL - Clay MC - Silty Clay SM - Silty Sand		
			2000000 B		E	C. Del de la	Termination Depth at: 4.0m		

SEOCONSU PROJECT NUM PROJECT NAM CLIENT KRC -	P DASAN		COM			COORDINATES 36K 0 685 281, 8 207 728 COORD SYS UTM TOTAL DEPTH 4.0m		
poute bout bout bout builling	water	Recovered	ed after 24h.	Water Level >24h	(m)	Graphic Log	LOGGED BY G.K. CHECKED BY M. Sabelli Material Description	
Drillin	ROD	% Rec	SPT	Water	Depth			
PERCUSSIVE				-	-0.2		CL - Clay SC - Clayey Sand	
					-0.6			
					-1 -1			
					- 1.2		GM - Silty Clay	
			/13,11,7		1.8			
					- 2.2			
					2.6		CM - Silty Clay	
					- 3			
					- 3.4		S - Sand	
					- 3.8			
			4,13,7		Ē.		Termination Depth at: 4.0m	

PROJECT NUMBER SBH24 PROJECT NAME SVTP CLIENT KRC - ISAN - DASAN Comments: No water measured after 24h.				COM			COORDINATES 36K 0 686 180 , 8 209 834 COORD SYS UTM TOTAL DEPTH 4.0m		
Comments: No	o water	measur	ed after 24h.				LOGGED BY G.K. CHECKED BY M. Sabeli		
Drilling Method	ROD %	% Recovered	SPT	Water Level >24h	Depth (m)	Graphic Log	Material Description		
PERCUSSIVE					-0.2		MC - Clay		
					- 0.4		SC - Clayey Sand		
					- 0.8				
					- 1.2		S - Sand		
					- 1.6				
			<u>/3, 3, 3</u>		-2				
					- 2.4				
					- 2.6				
					- 3.2				
					- 3.4				
			√5, 7, 8 \		- 3.8				

BOREHOLE LOG SVTP - SBH25 GEOCONSULT COORDINATES 36K 0 685 281 , 8 207 728 PROJECT NUMBER SBH25 DRILLING DATE 23-03-2021 PROJECT NAME SVTP COORD SYS UTM COMPLETION 23-03-2021 CLIENT KRC - ISAN - DASAN DIAMETER 150 TOTAL DEPTH 4.0m CASING Steel Comments: No water measured after 24h. LOGGED BY G.K. CHECKED BY M. Sabelli Water Level >24h **Drilling Method** % Recovered Ê Graphic Log Material Description RQD % Depth (SPT PERCUSSIVE CL - Top Soil 0.2 CM - Silty Sand 0.4 0.6 0.8 1 1.2 SC - Sand 1.4 1.6 1.8 3. 3. 4 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4, 4, 3 Lemination Liepin at 4 Um

EOCONSULT PROJECT NUMBER DBH64 PROJECT NAME SVTP CLIENT KRC - ISAN - DASAN				COM			COORDINATES 36K 0 685 877 , 8 216 811 COORD SYS UTM TOTAL DEPTH 4.0m		
omments: No	o water r	neasur	ed after 24h.				LOGGED BY G.K. CHECKED BY M. Sabelli		
Drilling Method	RQD %	% Recovered	гds	Water Level >24h	Depth (m)	Graphic Log	Material Description		
ROTARY WASH AND BORE			19. 38, 55++ PEN: 120MM		0.2 0.4 0.6 1 1.2 1.4 1.6 2.2 2.4 2.6 2.8 3.2 3.2 3.4 3.6		GC - Reddish brown sandy silly CLAY with spots of decomposed rock GP - Moist mottled WEATHERED ROCK		
			55++ PEN: 70MM		- 3.8				

				BO	REHO	DLE LOG SVTP	- DBH-65
PROJECT NAM	ROJECT NUMBER DBH65 ROJECT NAME SVTP LIENT KRC - ISAN - DASAN						COORDINATES 36K 0 688 209 , 8 211 386 COORD SYS UTM TOTAL DEPTH 4.0m
Comments: No	water i	neasur	ed after 24h.				LOGGED BY G.K. CHECKED BY M. Sabelli
Drilling Method	RQD %	% Recovered	SPT	Water Level >24h	Depth (m)	Graphic Log	Material Description
PERCUSSIVE			7, 6, 5		0.2 0.4 0.6 0.8 1 1.2 1.4 1.4 1.6 1.8 2 2.2 2.4 2.4 2.6 2.8 3 3.6 3.6 3.8		CL - Top Soll SM - Silty SAND CL - Clay SM- Silty SAND MC - Clayey silty SAND
			/3, 3, 3		-	NEWSNEW	Termination Depth at: 4.0m

GEOCONSULT PROJECT NUMBER SBH26 PROJECT NAME SVTP CLIENT KRC - ISAN - DASAN				DRILLING DATE 16-03-2021 COMPLETION 16-03-2021 DIAMETER 150 CASING Steel			COORDINATES 36K 0 686 879, 8 215 431 COORD SYS UTM TOTAL DEPTH 4.0m		
Comments: No	water (measur	ed after 24h.				LOGGED BY G.K. CHECKED BY M. Sabelli		
Drilling Method	RQD %	% Recovered	SPT	Water Level >24h	Depth (m)	Graphic Log	Material Description		
PERCUSSIVE					-0.2		PT - Top Soil GC - Reddish Clayey Quartz Gravel		
					- 0.6	L.L.	GP - Moist Weathered Rock		
WASH AND	3		√ <u>12,14,40</u>		-1.4		GP - Soft to Hard Moist Weathered Rock		
BORE					-2.2				
					-2.8				
					- 3.2				
			4,13,55++ PEN 130MM		-38				

	LAB REF No. GC1064 / 12	7MAR21 / 18:30	SAMPLE No. SVTP / SE	3H27 / 16MAR21
	SAMPLED BY: GEOCONS	SULT LAB. TEAM	DATE: 16 - 03 - 2021	TIME: 13:00
	LOCATION: 36L	EASTING	NORTHING	ELEVATION DEPTH
	SBH27 - CHIKWAWA	0 686 455	8 215 347	0 103 (m) 2.000 (m
	TYPE OF MATERIAL: EXI	STING NATURAL SOILS		
EOCONSULT	TESTED BY: G. KONDE		DATE: 16 - 03 - 2021	TIME: 13:00
265 0888 846 543	CHECKED BY: G. KACHIN	WALA	DATE: 16 - 03 - 2021	TIME: 14:00
belli@geoconsult.cc	APPROVED BY: M. SABE	LLI	DATE: 08 - 04 - 2021	TIME: 15:00
	EY TRANSFORMATIO		CLIENT: KRC	
	TRIAL PIT SOIL P	ROFILE STAND	ARD: ASTM D (2487)
	0 100 200 300 400	CL (CLAY TOP SOIL)		
		GM (SILTY GRAVEL)		
	1100 1200 1300 1400 1500 1600 1600 1700 1800 1900 2000	GW (WEATHERED RO	CK)	
	PHOTOGRAF	PHIC REPORT		
EMARKS: TEST PIT	A. The	hillion a se	1 1 2 2	

	LAB REF No. GC1064 / 1		SAMPLE No. SVTP / SE	8H28 / 16MAR21
	SAMPLED BY: GEOCON	ISULT LAB. TEAM	DATE: 16 - 03 - 2021	TIME: 12:45
	LOCATION: 36L	EASTING	NORTHING	ELEVATION DEPTH
	SBH28 - CHIKWAWA	0 687 548	8 215 588	0 102 (m) 2.000 (m
	TYPE OF MATERIAL: EX	ISTING NATURAL SOILS		
EOCONSULT	TESTED BY: G. KONDE		DATE: 16 - 03 - 2021	TIME: 12:45
265 0888 846 543	CHECKED BY: G. KACH	IWALA	DATE: 16 - 03 - 2021	TIME: 14:00
belli@geoconsult.cc	APPROVED BY: M. SAB	ELLI	DATE: 08 - 04 - 2021	TIME: 15:00
	LEY TRANSFORMATIC		CLIENT: KRC	
	TRIAL PIT SOIL P	Contraction of the second second	ARD: ASTM D (2487)
	0 100 200 300	CL (CLAY TOP SOIL)		
	400 500 600 700 800 900	SC (MOIST DARK BRO	WN SANDY CLAY)	
	1000 1100 1100 1200	CL (CLAY)		
	1300 1400 1500 1600 1700 1800 1900 2000	GP (WEATHERED ROO	:к)	
	PHOTOGRA	PHIC REPORT		
the second second	Carly and a market and		A REAL PROPERTY AND	

ROJECT NAM		BH29				ATE 17-03-2021	COORDINATES 36K 0 688 097, 8 214 104
			COMPLETION 17-03-2021 DIAMETER 150 CASING Steel			COORD SYS UTM TOTAL DEPTH 4.0m	
omments: W	fater end	ountere	ed at 4.0m. No wate	er meas	ured aft	er 24h.	LOGGED BY G.K. CHECKED BY M. Sabelli
Drilling Method	RQD %	% Recovered	2 N	Water Level >24h	Depth (m)	Graphic Log	Material Description
ERCUSSIVE		ŕ			Ē		SC - Top Soil
					-0.2		
					0.6		ML - Moist Clay
					- 0.8		
					-1		
					-1.2		MC - Moist Mottled Sandy Silty Clay
					- 1.4	1 / / /	
					- 1.6		
					- 1.8		
			13, 13, 13		-2	1111	
					-2.2	[[]]]	
					-2.4	////	
					-2.6		
					- 2.8		
					-3.2		GP - Moist Mottled Sandy Silty Clay with Decomposed Roc
					-3.4		
					- 3.6		
					- 3.8		
	<u> </u>	<u> </u>	10, 12, 12		Ē.	//////	Termination Depth at: 4.0m

EOCONSULT ROJECT NUMBER: SBH30 ROJECT NAME: SVTP LIENT: KRC - ISAN - DASAN				DRILLING DATE 18-03-2021 COMPLETION 18-03-2021 DIAMETER 150 CASING Steel			COORDINATES 36K 0 691 553 , 8 214 088 COORD SYS UTM TOTAL DEPTH 4.0m	
omments: No water measured after 24h.					LOGGED BY G.K. CHECKED BY M. Sabelli			
Drilling Method	ROD %	% Recovered	PT	Water Level >24h	Depth (m)	Graphic Log	Material Description	
RCUSSIVE			3, 2, 2		0.2 0.4 0.6 0.8 11 1.2 1.4 1.6 1.8 2.2 2.4 2.6 2.2 2.4 2.6 3.3 3.4 3.6		SC - Silty Sand	
			/9, 11, 12		-3.8		Termination Depth at: 4.0m	

GEOCONSULT PROJECT NUMBER SBH31 PROJECT NAME SVTP CLIENT KRC - ISAN - DASAN Comments: No water measured after 24h.				DRILLING DATE 21-03-2021 COMPLETION 22-03-2021 DIAMETER 150 CASING Steel			COORDINATES 36K 0 688 031 , 8 214 722 COORD SYS UTM TOTAL DEPTH 4.0m	
Comments: No	water i	neasur	ed after 24h.				LOGGED BY G.K. CHECKED BY M. Sabelii	
Drilling Method	ROD %	% Recovered	sPT	Water Level >24h	Depth (m)	Graphic Log	Material Description	
PERCUSSIVE			41, 55++ PEN 140MM		0.2 0.4 0.6 1.2 1.4 1.6 1.6 2.2 2.2 2.4 2.6 3.2 3.2 3.4 3.6 3.8		GC - Weathered Rock	

Korea Rural Community Corporation 🗈 DASAN CONSULTANTS 📢 ISAN

Comments: No v	SAN - D	ASAN		COMI DIAM CASII			COORDINATES 36K 0 689 909 , 8 209 416 COORD SYS UTM TOTAL DEPTH 4.0m
			ed after 24h.	4			
filling Method	RQD %	overed		4			LOGGED BY G.K. CHECKED BY M. Sabelli
ā		% Rec	SPT	Water Level >24h	Depth (m)	Graphic Log	Material Description
PERCUSSIVE		·	/3, 3, 3		0.2 0.4 0.6 1.2 1.6 1.6 1.6 2.2 2.4 2.6 2.2 2.4 2.6 3.2 3.2 3.4 3.6 3.8		SM - Top Soil SC - Clayey Sand
			/3, 3, 3		E+-	ann seither seither seithe	Termination Depth at: 4.0m

Korea Rural Community Corporation 🗈 DASAN CONSULTANTS 📢 ISAN

SEOCONS								
PROJECT NUMBER SBH33 PROJECT NAME SVTP CLIENT KRC - ISAN - DASAN				COM			COORDINATES 36K 0 687 295 , 8 225 699 COORD SYS UTM TOTAL DEPTH 7.0m	
comments: 1	No water	measured :	after 24h.				LOGGED BY G.K. CHECKED BY M. Sabelli	
Drilling Method	ROD %	% Recovered	SPT	Water Level >24h	Depth (m)	Graphic Log	Material Description	
PERCUSSIVE					:		CM - Top Soil	
					- 0.5	1 8 10 - 2 1	GC - Clayey Gravel	
					Ē	f f f f f		
					-1	1. K. J. J. J.		
					Ē	- 10000 - 0	GM - Silty Gravel	
					- 1.5	6000000		
					-2	5 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
					E	9. 000 00 0		
WASH AND BORE	1				2.5		SC - Clayey Sand	
					Ē			
					-3			
					- 3.5			
					E			
					-4		GC - Silty Gravel	
					Ē	- 000 1960 - 000 1960		
					- 4.5	- 000 - 50 - 0		
					Ē,	0.00000		
CORING	0%	0%			-5		No Recovery	
					- 5.5			
					Ē			
	0%	20%			-6	0.1800 100	GC - Weathered Rock Fragments	
					Ē	00,00,000	nen en	
					- 6.5	000.000		
					-	00000000		

Drilling Rig Set Up for SBH-1

Rod & Bit for Drilling

- Drilling Rig Set Up for SBH-4
- Disturbed Sample of SBH-4

- Drilling Rig Set Up for SBH-7
- Disturbed Sample of SBH-7

Site Scene for SBH-10

Disturbed Sample of SBH-10

- Drilling Rig Set Up for SBH-12
- Disturbed Sample of SBH-12

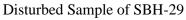
- Drilling Rig Set Up for SBH-16
- Disturbed Sample of SBH-16

Drilling Rig Set Up for SBH-20

Disturbed Sample of SBH-20

Drilling Rig Set Up for SBH-23

Disturbed Sample of SBH-23



Site Scene of SBH-29

Disturbed Sample of DBH-65

