

GOVERNMENT OF MALAWI

MINISTRY OF AGRICULTURE, IRRIGATION AND WATER DEVELOPMENT

November 2016

KOREA RURAL COMMUNITY CORPORATION

in Joint Venture with DASAN CONSULTANTS CO., LTD., GK WORKS CIVIL AND STRUCTURAL ENGINEER

Executive Summary

Introduction

The purpose of the investigation was to determine the surface and subsurface conditions of the project site including determination for the physical, chemical and mechanical properties of subsurface ground materials based on the analysis of collected samples from site location and field testing and examination, in order to assist in the design and construction of the proposed project.

Percussive Drilling and Auger Boring

The geotechnical investigation comprised field surveys, laboratory tests and material surveys. As stipulated in the ToR, the Consultant selected 28 points along the canal for geotechnical investigations, covering the Main Canal 1 as well as the entire route of the canal where percussive drilling and auger boring was done. Additionally, 20 points were selected along the canal for permeability tests. Each site for geotechnical investigation was checked through the reconnaissance survey for ease of accessibility with regard to the geotechnical investigation equipment. And as stated in the preceding discussion, the investigations were conducted using percussive drilling or auger boring.

The geotechnical investigations and laboratory test were done in accordance with the Malawi's recommended standards. Standard penetration test (SPT) was carried out in boreholes at intervals of 1.5m. In addition to SPT, samples were collected from boreholes at intervals of 1.5m for laboratory testing.

- · Geotechnical investigation works included the following;
 - a) Percussive drilling and Auger boring,
 - b) Standard penetration test,
 - c) Disturbed and undisturbed soil sampling,
 - d) Permeability test and laboratory tests for disturbed and undisturbed soil samples.
- Laboratory tests included the following;
 - a) Atterberg limits,
 - b) Sieve analysis,
 - c) Triaxial test,
 - d) Unit weight and specific gravity.

Scope of Geotechnical Survey

Geotechnical surveys involved field activities and laboratory work. Field activities were carried out in accordance with BS 5903 of 1990, and the laboratory activities were carried out in accordance with BS 1377 of 1991. Details of field and laboratory activities are as followings;

- Field Activities;
 - a) Location of borehole positions

- b) Drilling of 19 boreholes
- c) Collection of disturbed & undisturbed samples
- d) Carrying out standard penetration tests at an interval of 1.5 m
- e) Excavation of Permeability pits to maximum of 1.0 m
- f) Collection of samples for permeability test
- g) Logging of each borehole and each permeability pit
- h) Carrying out of 3 sand replacement tests
- i) Carry out 9 Auguring holes
- j) Carrying out G/pits surveys
- k) Carrying out quarry surveys
- I) Carrying out of unit weight tests
- · Laboratory Activities;
 - a) Determination of sieve analysis
 - b) Determination of atterberg limits
 - c) Permeability test
 - d) Specific gravity
 - e) Natural moisture content
 - f) Determination of Maximum dry density
 - g) Determination of Aggregate Crushing Value

Survey Result

The geological map of Malawi reveals that the proposed Shire Valley Irrigation Project is partly within the Shire Highlands and mostly within the Lower Shire Valley Plains. From the intake site, soil characteristics reveal the existence of charnockitic suite: banded pyroxene granulites and gneisses, and hyperthene-granite of precabrian palaezoic late origin. Alluvium of quarternary origin occurs from the foot of the escarpment to Kamuzu Bridge to Majete and Bangula.

The composition of field activities during the operation of the survey included the following: 19 boreholes were drilled, 20 permeability pits were excavated, 9 Auguring holes were sunk, 89 disturbed samples were collected for sieve analysis and atterberg limit tests, 40 Natural moisture content tests were performed in the laboratory, 20 permeability tests were conducted in the laboratory, and 3 sand replacement test were done. These activities were done along the proposed canal lines and within the command area.

The drilling depths of the boreholes were decided based on the bed elevations of canal, and the drilling were executed up to the 1 m below those elevations.

Boreholes: the following boreholes were drilled at various strategic points along the canal lines and within the command area:

- BH A Comprises of 2 layers and it was drilled to maximum of 2.65m.
- BH 1 Comprises of 6 layers and it was drilled to maximum of 6.47m.
- BH 2 Comprises of 6 layers and it was drilled to maximum of 6.5m.
- BH 3 Comprises of 3 layers and it was drilled to maximum of 9.70m.
- BH 4 & 5 were drilled to maximum of 2.235m on average.
- BH 7a Comprises of 3 layers and it was drilled to maximum of 1.30m.

- BH 6, 7 & 9 were drilled to maximum of 3.45m on average.
- BH 12, 13 & 14 were drilled to maximum of 4.15m on average.
- BH 15 & 16 were drilled to maximum of 3.45m each.
- BH 18 Comprises of 6 layers and it was drilled to maximum of 6.45m.
- BH 22 was drilled to maximum of 3.0m.
- BH 23 & 24 were drilled to maximum of 3.175m on average

Rock layers were found at BH-ABH-4, BH-9, BH-13, 14, 15, situated 2 ~ 3m below the ground surface. The earth layer in each borehole is 2 m thick from the ground surface and comprises sand, silt, and clay. Granular material was found along the Main Canal 1 section, and is equivalent to A-1(A-1-a, A-1-b), A-2(A-2-4~7) following the AASHTO Soil Classification System. Samples collected from this proposed site have been analyzed and fall into 5 (five) main soil subgroups of A-1, A-2, A-4, A-6 & A-7. The three soil subgroup of A-1, A-2 and A-7 are good quality of soil characteristics for civil works.

The first subgroups of A-4 & A-6 are poor soils which are plastic and having high volume changes, with fluctuating moisture content. Therefore, their expansive and contracting characteristics should be taken into account when designing structures. A-4(Silt), A-6(Sand) soil groups exist along the Main Canal 1 and 2 sections, located within 3 m depth from the ground surface. These soils are recommended to be replaced or treated during canal construction for the persistence of structures. In terms of the construction conditions this will not be a substantial constraint.

The second subgroups of A-2-4, A-2-6 & A-2-7 are fairly to good soils which are not highly plastic, A-2-4 & A-2-5 have maximum plasticity index of 10%, and A-2-6 & A-2-7 soil subgroups have a minimum plasticity index of 11%.

The third subgroups of A-1-a & A-1-b are good to excellent soils which have very low plasticity index (PI) of not more than 6% or are Non Plastic (NP).

Borrow Pits: the following borrow pits were dug and quarry sites investigated for determining appropriate sites as sources of construction materials:

8 borrow pits and 4 quarry sites were investigated to be a source of construction materials for the proposed Shire Valley Irrigation Project. Borrow pits investigated are Tomali, Nyaika, Sibale old pit, Nyamithuthu old pit, Chikhama, Moroko, Chikalumpha and Namiche. Quarry sites investigated are Kajawo, Thabwa existing quarry, Nzongwe and Ngabu. Characteristics of all the sites investigated are as follows:

- Tomali gravel pit: 2 main soil subgroups of A-2-4 and A-2-6 were identified, with CBR values of 16 % at 95 and 18% at 98
- Nyaika gravel pit: 2 main soil subgroups of A-2-6 and A-2-7 were identified, with CBR values of 30 % at 95 and 74% at 98
- Sibale gravel pit: 1 main subgroup of A-1-a was identified, with CBR values of 54% at 95 and 65% at 98
- Nyamithuthu old pit: 2 main subgroups of A-1-a and A-2-4 were identified, with CBR values of 54 % at 95 and 74% at 98
- Chikhamba, Namacha and Chikalimba borrow pits: 3 main subgroups of A-1-a, A-2-4 & A-2-6 were identified, with CBR values of 22 % at 95 and 48% at 98, 34 %at 95 and 42% at 98 & 16 % at 95 and 27% at 98 respectively

- Moroko gravel pit: 3 main soil subgroups of A-6, A-2-6 & A-2-7were identified, with CBR values of 24 % at 95 and 25% at 98
- Kajawo quarry site produces aggregate with a crushing value of 35.3%
- Thabwa quarry site produces aggregate with a crushing value of 30.1%
- Nzongwe quarry site produces aggregate with a crushing value of 43.0%
- Ngabu quarry site produces aggregate with a crushing value of 22.0%

Ngabu quarry site qualifies to be the source of construction material for the roads because the crushing value falls within the not more than 25% specification. Kajawo and Thabwa quarry sites can be used as sources of quarry for concrete works because the crushing values fall within the not more than 35% specification for concrete works. Nzongwe quarry site is unsuitable as a source of construction materials because the crushing values fall outside the specification for both roads and concrete works.

Kajawo and Thabwa quarry sites shall be the main source of quarry material. These sites are near to each other and located at the bottom of the escarpment at the entrance into the Lower Shire Valley Plain from Blantyre. The distance between these sites and Majete Game Reserve, which is the farthest points of the main canals, is about 20 km.

Table of Contents

1.	Overview of Geotechnical Investigation	1
2.	First Geotechnical Investigation	1
2.1.	Percussive Drilling and Auger Boring	1
2.2.	Determining Seepage Losses in the Main Canal 1	3
2.3.	Geotechnical Assessment	7
2.4.	Result of First Investigation	9
3.	Second Geotechnical Investigation	9
3.1.	Scope of Geotechnical Survey	9
3.2.	Result of Second Investigation	10
3.2.1	. Boreholes	15
3.2.2	. Borrow Pits	

APPENDIX	19
Appendix A. Sketch Plans	21
Appendix B. Gravel Quantities	
Appendix C. Quarry Results	
Appendix D. Borehole Logs	
Appendix E. Test Results (Boreholes)	
Appendix F. Gravel Test Results	
Appendix G. Borehole Unit Weight & NMC	65
Appendix H. Auguring, Unit Weight & NMC	
Appendix I. Auguring Test Results	
Appendix J. Permeability Test Results	
Appendix K. Location Picture	
Appendix L. Field Pictures	
Appendix M. Lab Pictures	

1. Overview of Geotechnical Investigation

This report is presenting the geotechnical investigation results and evaluations for the site for the proposed Shire Valley Irrigation Scheme Project (SVIP) which was subjected to this investigation for the preliminary design of the canal from Majete through to Illovo and Bangula, in Chikwawa District.

Geotechnical investigation was implemented two times: January 2016 and April 2016. The purpose of the investigation was to determine the surface and subsurface conditions of the project site including determination for the physical, chemical and mechanical properties of subsurface ground materials based on the analysis of collected samples from site location and field testing and examination, in order to assist in the design and construction of the proposed project.

The geotechnical investigation focused on the Main Canal 1, Main Canal 2 and Main Canal 3, and the general procedure of geotechnical investigation is as follows;

[Figure 1.1] Flow Chart of Geotechnical Investigation

2. First Geotechnical Investigation

2.1. Percussive Drilling and Auger Boring

The geotechnical investigation comprised field surveys, laboratory tests and material surveys. As stipulated in the ToR, the Consultant selected 28 points along the canal for geotechnical investigations, covering the Main canal 1 as well as the entire route of the canal where percussive drilling and auger boring was done.

Additionally, 20 points were selected along the canal for permeability tests. Table $2.1 \sim$ Table 2.4 show the location of investigation sites.

Division	Coordination(X)	Coordination(Y)	Division	Coordination(X)	Coordination(Y)
BH-A	686,895	8,243,053	BH-7a	686,827	8,233,919
BH-1	687,065	8,242,376	BH-8	687,227	8,230,525
BH-2	687,002	8,242,353	BH-9	688,103	8,228,704
BH-3	687,016	8,242,312	BH-10	688,807	8,225,246
BH-4	687,007	8,241,230	BH-11	686,596	8,226,466
BH-5	686,463	8,240,248	BH-12	685,911	8,224,369
BH-5a	684,839	8,240,356	BH-13	685,652	8,222,834
BH-6	686,438	8,237,896	BH-14	686,163	8,221,108
BH-7	686,303	8,236,287	BH-15	685,320	8,218,020

[Table 2.1] Coordination of Percussive Drilling and Auger Boring (Main Canal 1)

[Table 2.2] Coordination of Percussive Drilling and Auger Boring (Main Canal2)

Division	Coordination(X)	Coordination(Y)	Division	Coordination(X)	Coordination(Y)
BH-16	684,049	8,217,595	BH-19	679,938	8,211,724
BH-16a	683,246	8,215,276	BH-20	679,924	8,210,266
BH-17	682,089	8,214,494	BH-21	680,629	8,208,430
BH-18	681,169	8,213,292	BH-22	681,605	8,207,101

[Table 2.3] Coordination of Percussive Drilling and Auger Boring (Main Canal3)

Division	Coordination(X)	Coordination(Y)	Division	Coordination(X)	Coordination(Y)
BH-23	687,273	8,214,217	BH-24	689,558	8,211,321

[Table 2.4] Coordination of Permeability Test

Division	Coordination(X)	Coordination(Y)	Division	Coordination(X)	Coordination(Y)
P/T-1	685,319	8,218,020	P/T-11	698,810	8,182,103
P/T-2	682,089	8,214,494	P/T-12	703,761	8,175,634
P/T-3	679,924	8,210,266	P/T-13	705,858	8,172,694
P/T-4	681,605	8,207,101	P/T-14	707,631	8,171,814
P/T-5	681,278	8,205,535	P/T-15	710,412	8,169,054
P/T-6	683,444	8,204,933	P/T-16	714,797	8,166,150
P/T-7	686,030	8,201,739	P/T-17	717,172	8,165,297
P/T-8	689,191	8,196,727	P/T-18	687,273	8,214,217
P/T-9	693,933	8,191,090	P/T-19	687,345	8,213,157
P/T-10	696,240	8,185,028	P/T-20	689,558	8,211,321

Each site for geotechnical investigation was checked through the reconnaissance survey for ease of accessibility with regard to the geotechnical investigation equipment. And as stated in the preceding discussion, the investigations were conducted using percussive drilling or auger boring.

[Figure 2.1] Drilling Point Check(left) and Percussive Drilling & Standard Penetration Test(right)

The geotechnical investigations and laboratory test were done in accordance with the Malawi's recommended standards. Standard penetration test (SPT) was carried out in boreholes at intervals of 1.5m. In addition to SPT, samples were collected from boreholes at intervals of 1.5m for laboratory testing.

Geotechnical investigation works included the following;

- a) Percussive drilling and Auger boring,
- b) Standard penetration test,
- c) Disturbed and undisturbed soil sampling,
- d) Permeability test and laboratory tests for disturbed and undisturbed soil samples.

Laboratory tests included the following;

- a) Atterberg limits,
- b) Sieve analysis,
- c) Triaxial test,
- d) Unit weight and specific gravity.

The Consultant supervised the field and laboratory tests and evaluated the results.

2.2. Determining Seepage Losses in the Main Canal 1

The geotechnical tests on the Main canal 1 focused on seepage losses and hydraulic conductivities. Since an infiltrometer was not readily available for use in the determination of seepage losses at the 10 selected points on the Main Canal 1 (Table 2.5), starting with Point 1 at the Intake of the Main Canal 1 and ending with Point 10 close to Road D134, an

alternative method involving digging pits was adopted.

Division		Location	Туре	Chain No.	Coordination (X,Y)
1	Main 1	Intake	Longitudinal Structure	0+000	687073.6 , 8242379.0
2	Main 1	Road D135	Longitudinal Structure	2+854	686850.7 , 8241561.7
3	Main 1	Road D135	Longitudinal Structure	5+706	686512.7 , 8240341.4
4	Main 1	Mwambezi	Cross sectional drain structure	7+451	685546.3 , 8240111.8
5	Main 1	Namkati	Cross sectional drain structure	15+207	685641.4 , 8236817.1
6	Main 1	Masakale	Cross sectional drain structure	23+092	684964.2 , 8234499.8
7	Main 1	Kadeya	Cross sectional drain structure	29+213	686951.3 , 8232689.9
8	Main 1	Manjalende	Cross sectional drain structure	34+350	687303.0 , 8229997.1
9	Main 1	Nthumba	Cross sectional drain structure	54+620	684998.1 , 8224103.1
10	Main 1	Road D134	Longitudinal Structure	56+447	685678.0 , 8222840.7

[Table 2.5] List of the Main Structures

The 10 points along the Main Canal 1 were located in the field using a GPS unit. The following steps were thereafter followed in the determination of percolation rates:

- (a) Excavation of the soil layer which was to be assessed for percolation rate by digging a pit measuring 1m by 1m and by 0.5m depth. All the loose material was then removed from the sides and bottom of the pit (Figure 2.2);
- (b) A smaller pit measuring 300 mm by 300 mm and 300 mm deep was dug in the larger pit (Figure 2.3);
- (c) Water was then poured into the small pit to wet the soil, i.e. presoaking, prior to taking measurements of percolation time (Figure 2.4);
- (d) After thoroughly wetting the soil, the small pit was then filled with water, noting the time that was taken for the water to drop by 225 mm, with a minimum of 10 minutes considered adequate for recording the percolation time (Figure 2.5); and thereafter
- (e) Seepage losses were calculated by dividing the depth of water drop by the time taken. After conducting the percolation test in the field, soil samples were collected from each pit for laboratory testing at the Civil Engineering Laboratory at the Malawi Polytechnic to determine the respective hydraulic conductivities of the soils excavated from the pits using the Darcy's experimental setup.

[Figure 2.2] Measuring the Surface Dimension of the Pit (left) and Digging the Pit (right)

[Figure 2.3] The 300mm by 300mm by 300mm Hole

[Figure 2.4] Presoaking the Hole

[Figure 2.5] Recording Time Taken for the Water Level to Drop to 225 mm

After conducting the percolation test in the field, soil samples were collected from each pit for laboratory testing at the Civil Engineering Laboratory at the Malawi Polytechnic to determine the respective hydraulic conductivities of the soils excavated from the pits using the Darcy's experimental setup as shown in Figure 2.6.

[Figure 2.6] Laboratory Setup for Permeability Test

[Figure 2.7] Permeability Test

2.3. Geotechnical Assessment

Presented in Table 2.6 is brief descriptions of soil profiles exhibited by the pits excavated at the 10 selected points along the Main canal 1.

Site Number	Description of Soil Profile
1	0-400 mm, dark brownish soil, comprising clays, fine sands, and humus; >400 mm, reddish brown soil, containing clays and fine sands.
2	0-300 mm, black soil, consisting of clays, fine sands, and humus; >300 mm, loamy sandy soil
3	0-250 mm, reddish brown soil, comprising fine sands and clays; >250 mm, reddish brown sandy soil.
4	0-400 mm, dark brownish soil, containing fine sands and clays; >400 mm, brownish sandy soil.
5	0-300 mm, dark greyish soil, with fine sands and clay; >300 mm, decomposed metamorphic rock of gneiss origin, with feldspars
6	0-400 mm, dark brownish soils, containing fine sands and clays; >400 mm, brownish sandy soil
7	0-400 mm, decomposed rock of gneiss origin, with feldspars; >400 mm, decomposed rock
8	0-400 mm, dark brownish soil, comprising clays and fine sands; >400 mm brownish sandy soils
9	0-400 mm, decomposed lateritic rock; >400 mm, decomposed lateritic rock.
10	0-330 mm, dark brownish soil, comprising clays and fine sands; >330 mm, reddish sandy loam soils

[Table 2.6] Description of Soil Profiles

It is clear from the description of the soil profiles that the soils along the Main canal 1 are generally sandy in nature comprising clays and humus. As such, conveyance losses due to seepage expected to take place, therefore in this point of view lining of canal is recommended. Especially inside Majete area, the lined Main canal 1 is highly recommended to minimize the seepage loss. In this regard a buried concrete siphon could be considered as another option. During the preliminary design the pros and cons of the two alternatives shall be carefully assessed, and selected the more advantageous one.

[Figure 2.8] Soil Samples Collected from the 10 Points on the Feeder Canal

Presented in Table 2.7 and Table 2.8, respectively, are the results of the percolation and soil permeability tests conducted at Points 1 to 10 on the Main canal 1.

Site Number	Time Elapsed (min)	Total Water Drop (mm)	Percolation Rate (mm/sec)
1	18	221	0.20
2	21	150	0.12
3	10	225	0.38
4	32	180	0.09
5	24	220	0.15
6	20	200	0.17
7	23	220	0.16
8	21	120	0.10
9	10	140	0.23
10	10	95	0.16

[Table 2.7] Results of the Percolation Test

Note: Percolation Rate = Total Water Drop/Time Elapsed

Sample No.	Hydraulic Gradient	Length of Sample (mm)	Volume (cm ³)	Time (min)	Coefficient of Permeability (mm/sec)
1	6.52	225	562	45	0.063
2	6.52	226	540	45	0.061
3	6.52	226	594	45	0.067
4	6.52	226	952	45	0.108
5	6.52	225	2580	45	0.291
6	6.52	225	1660	45	0.187
7	6.52	225	2160	45	0.244
8	6.52	226	584	45	0.066
9	6.52	226	844	45	0.095
10	6.52	226	440	45	0.050

[Table 2.8] Results of Soil Permeability

Note from the preceding discussion that,

$$Q = -KA\frac{dh}{dl}$$

Where, K is the permeability, Q is the discharge, A is the cross-sectional area of flow, and dh/dl is the hydraulic gradient.

According to the soil classification developed by Myslivec and Kysela (1978), the soils excavated at the 10 pits fall within the group of Loess Loam (Table 2.9), with coefficient of permeability in the range of 10^{-2} to 10^{-4} .

Type of Soil	Coefficient of Permeability k [m/day]	Motion of Water Particle by1 cm for Hydraulic Gradient i = 1 per time
Soft sand	10 ² - 10	6 s - 10 min
Clayey sand	10 ⁻¹ - 10 ⁻²	100 min - 18 hrs
Loess loam	10 ⁻² - 10 ⁻⁴	18 hrs - 70 days
Loam	10 ⁻⁴ - 10 ⁻⁵	70 days - 2 years
Clayey soil	10 ⁻⁵ - 10 ⁻⁶	2 years - 20 years
Clay	10 ⁻⁶ - 10 ⁻⁷	20 years - 200 years

[Table 2.9] Permeability for Various Soils (Source: Myslivec and Kysela, 1978)

2.4. Result of First Investigation

Study findings show that the area that will be traversed by the Main canal 1 comprises sandy soils which will likely result in high seepage losses if the canal is not going to be paved or lined with concrete. Additionally, it has been recommended to use concrete pipes buried in the ground to be used as a water conveyance system so as to reduce evaporation losses and to protect wild animals from drowning.

3. Second Geotechnical Investigation

Second geotechnical surveys were carried out for the proposed SVIP. The purpose of the geotechnical surveys was to determine the surface and subsurface conditions at specific points within the project area including the physical, chemical and mechanical properties of subsurface materials in order to;

- Evaluate the geotechnical engineering conditions of the project area in order to assist in the design and construction of the most suitable and economical structures.
- Evaluate the corrosiveness of the site materials to assist in the selection of most suitable construction materials and protection measures.
- To evaluate the permeability of the ground to come up with economical treatment.
- Determine the soil parameters for safe and economical design of the structures.

3.1. Scope of Geotechnical Survey

Geotechnical surveys involved field activities and laboratory work. Field activities were

carried out in accordance with BS 5903 of 1990, and the laboratory activities were carried out in accordance with BS 1377 of 1991. Details of field and laboratory activities are given in Table 3.1.

Item	Tasks					
	Location of borehole positions					
	Drilling of 19 boreholes					
	Collection of disturbed & undisturbed samples					
	Carrying out standard penetration tests at an interval of 1.5 m					
	Excavation of Permeability pits to maximum of 1.0 m					
Field Activition	Collection of samples for permeability test					
FIEID ACTIVITIES	Logging of each borehole and each permeability pit					
	Carrying out of 3 sand replacement tests					
	Carry out 9 Auguring holes					
	Carrying out G/pits surveys					
	Carrying out quarry surveys					
	Carrying out of unit weight tests					
	Determination of sieve analysis					
	Determination of atterberg limits					
	Permeability test					
Laboratory Activities	Specific gravity					
	Natural moisture content					
	Determination of Maximum dry density					
	Determination of Aggregate Crushing Value					

3.2. Result of Second Investigation

The geological map of Malawi reveals that the proposed Shire Valley Irrigation Project is partly within the Shire Highlands and mostly within the Lower Shire Valley Plains. From the intake site, soil characteristics reveal the existence of charnockitic suite: banded pyroxene granulites and gneisses, and hyperthene-granite of precabrian palaezoic late origin. Alluvium of quarternary origin occurs from the foot of the escarpment to Kamuzu Bridge to Majete and Bangula.

The composition of field activities during the operation of the survey included the following: 19 boreholes were drilled, 20 permeability pits were excavated, 9 Auguring holes were sunk, 89 disturbed samples were collected for sieve analysis and atterberg limit tests, 40 Natural moisture content tests were performed in the laboratory, 20 permeability tests were conducted in the laboratory, and 3 sand replacement test were done. These activities were

done along the proposed canal lines and within the command area. The various locations are depicted in Figure $3.1 \sim$ Figure 3.4.

[Figure 3.2] Location Map of Geotechnical Investigation -2

[Figure 3.3] Location Map of Geotechnical Investigation -3

[Figure 3.4] Location Map of Geotechnical Investigation -4

The drilling depths of the boreholes were decided based on the bed elevations of canal, and the drilling were executed up to the 1 m below those elevations.

3.2.1. Boreholes

<u>Boreholes:</u> the following boreholes were drilled at various strategic points along the canal lines and within the command area:

- BH A Comprises of 2 layers and it was drilled to maximum of 2.65m.
- BH 1 Comprises of 6 layers and it was drilled to maximum of 6.47m.
- BH 2 Comprises of 6 layers and it was drilled to maximum of 6.5m.
- BH 3 Comprises of 3 layers and it was drilled to maximum of 9.70m.
- BH 4 & 5 were drilled to maximum of 2.235m on average.
- BH 7a Comprises of 3 layers and it was drilled to maximum of 1.30m.
- BH 6, 7 & 9 were drilled to maximum of 3.45m on average.
- BH 12, 13 & 14 were drilled to maximum of 4.15m on average.
- BH 15 & 16 were drilled to maximum of 3.45m each.
- BH 18 Comprises of 6 layers and it was drilled to maximum of 6.45m.
- BH 22 was drilled to maximum of 3.0m.
- BH 23 & 24 were drilled to maximum of 3.175m on average

[Figure 3.5] Drilling of Borehole and Laboratory Test

Samples collected from this proposed site have identified themselves into 5 (eight) main soil subgroups of A-1, A-2, A-4, A-6 & A-7. Rock layers were found at BH-ABH-4, BH-9, BH-13, 14, 15, situated 2 ~ 3m below the ground surface. The earth layer in each borehole is 2 m thick from the ground surface and comprises sand, silt, and clay. Granular material was found along the Main canal 1 section, and is equivalent to A-1(A-1-a, A-1-b), A-2(A-2-4~7)

following the AASHTO Soil Classification System. Samples collected from this proposed site have been analyzed and fall into 5 (five) main soil subgroups of A-1, A-2, A-4, A-6 & A-7. The three soil subgroup of A-1, A-2 and A-7 are good quality of soil characteristics for civil works.

The first subgroups of A-4 & A-6 are poor soils which are plastic and having high volume changes, with fluctuating moisture content. Therefore, their expansive and contracting characteristics should be taken into account when designing structures. A-4(Silt), A-6(Sand) soil groups exist along the Main Canal 1 and 2 sections, located within 3 m depth from the ground surface. These soils are recommended to be replaced or treated during canal construction for the persistence of structures. In terms of the construction conditions this will not be a substantial constraint.

The second subgroups of A-2-4, A-2-6 & A-2-7 are fairly to good soils which are not highly plastic, A-2-4 & A-2-5 have maximum plasticity index of 10%, and A-2-6 & A-2-7 soil subgroups have a minimum plasticity index of 11%.

The third subgroups of A-1-a & A-1-b are good to excellent soils which have very low plasticity index (PI) of not more than 6% or are Non Plastic (NP).

3.2.2. Borrow Pits

<u>Borrow Pits:</u> the following borrow pits were dug and quarry sites investigated for determining appropriate sites as sources of construction materials:

8 borrow pits and 4 quarry sites were investigated to be a source of construction materials for the proposed Shire Valley Irrigation Project. Borrow pits investigated are Tomali, Nyaika, Sibale old pit, Nyamithuthu old pit, Chikhama, Moroko, Chikalumpha and Namiche. Quarry sites investigated are Kajawo, Thabwa existing quarry, Nzongwe and Ngabu. Characteristics of all the sites investigated are as follows:

- Tomali gravel pit: 2 main soil subgroups of A-2-4 and A-2-6 were identified, with CBR values of 16 % at 95 and 18% at 98
- Nyaika gravel pit: 2 main soil subgroups of A-2-6 and A-2-7 were identified, with CBR values of 30 % at 95 and 74% at 98
- Sibale gravel pit: 1 main subgroup of A-1-a was identified, with CBR values of 54% at 95 and 65% at 98
- Nyamithuthu old pit: 2 main subgroups of A-1-a and A-2-4 were identified, with CBR values of 54 % at 95 and 74% at 98
- Chikhamba, Namacha and Chikalimba borrow pits: 3 main subgroups of A-1-a, A-2-4 & A-2-6 were identified, with CBR values of 22 % at 95 and 48% at 98, 34 % at 95 and 42% at 98 & 16 % at 95 and 27% at 98 respectively
- Moroko gravel pit: 3 main soil subgroups of A-6, A-2-6 & A-2-7were identified, with CBR values of 24 % at 95 and 25% at 98

- Kajawo quarry site produces aggregate with a crushing value of 35.3%
- Thabwa quarry site produces aggregate with a crushing value of 30.1%
- Nzongwe quarry site produces aggregate with a crushing value of 43.0%
- Ngabu quarry site produces aggregate with a crushing value of 22.0%

Ngabu quarry site qualifies to be the source of construction material for the roads because the crushing value falls within the not more than 25% specification. Kajawo and Thabwa quarry sites can be used as sources of quarry for concrete works because the crushing values fall within the not more than 35% specification for concrete works. Nzongwe quarry site is unsuitable as a source of construction materials because the crushing values fall outside the specification for both roads and concrete works.

Kajawo and Thabwa quarry sites shall be the main source of quarry material. These sites are near to each other and located at the bottom of the escarpment at the entrance into the Lower Shire Valley Plain from Blantyre. The distance between these sites and Majete Game Reserve, which is the farthest points of the main canals, is about 20 km.

- Blank Page -

APPENDIX

- A. Sketch Plans
- **B. Gravel Quantities**
- **C. Quarry Results**
- **D. Borehole Logs**
- E. Test Results (Boreholes)
- F. Gravel Test Results
- G. Borehole Unit Weight & NMC
- H. Auguring, Unit Weight & NMC
- I. Auguring Test Results
- J. Permeability Test Results
- **K. Location Picture**
- L. Field Pictures
- M. Lab Pictures

- Blank Page -

Appendix A. Sketch Plans

NYAIKA OLD PIT

PROPOSED BORROW AREAS

THICKNESS OF

GRAVEL(m) 0.80 0.63 0.75 0.80 0.80

PROJECT: SHIRE VALLEY IRRIGATION PROJECT

ĩ			180)m			Ĩ.			
-							•		PIT	DEPTH OF
^{1'} 0	0	0	0	0	0	0	0 ² -	†	N <u>o</u>	OVERBURDEN(m)
0	0	0	0	0	0	0	0		1	0.00
0	0	0	0	0	0	0	0		-	0.00
0	0	0	0	0	0	0	0		2	0.00
0	0	0	0	30	0	0	0	75m		
0	0	0	0	0	0	0	0		3	0.00
0	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0		4	0.00
40	~	-	~	~	~	~	-	Ļ		
40	0	0	0	0	0	0	0,		5	0.00

SOURCE: NYAIKA OLD B/PIT

PIT	DEPTH OF	THICKNESS
No	OVERBURDEN(m)	OF
		GRAVEL(m)

AVERAGE DEPTH OF OVERBURDEN=0.00

AVERAGE THICKNESS OF GRAVEL=0.75

ESTIMATED AVAILABLE QUANTITY (GROSS) =4,500m³

ESTIMATED AVAILABLE QUANTITY (NETT) (ALLOWING FOR 25% WASTAGE) = $3,375m^3$

NAMICHE B/PIT

PROPOSED BORROW AREAS

PROJECT: SHIRE VALLEY IRRIGATION PROJECT

SOURCE: NAMICHE B/PIT

1.			150	Dm					DIT		THICKNESS
		-			-	-	•		PII	DEPTH OF	THICKINESS
10	0	0	0	0	0	0	0 4 7		N <u>o</u>	OVERBURDEN(m)	OF
-	~	~	~	~	~	~	-				GRAVEL(m)
0	0	0	0	0	0	0	0		1	0.00	0.57
0	0	0	0	0	0	0	0				
									2	0.00	0.59
0	0	0	0	30	0	0	0	120m			
0	0	0	0	0	0	0	~		3	0.00	0.53
0	0	U	0	0	0	0	0				
0	0	0	0	0	0	0	0		4	0.00	0.53
⁴O	0	0	0	0	0	0	O⁵		5	0.00	0.55

PIT	DEPTH OF	THICKNESS
No	OVERBURDEN(m)	OF
		GRAVEL(m)

AVERAGE DEPTH OF OVERBURDEN=0.00m

AVERAGE THICKNESS OF GRAVEL=0.53m

ESTIMATED AVAILABLE QUANTITY (GROSS) = $9,540m^3$

ESTIMATED AVAILABLE QUANTITY (NETT) (ALLOWING FOR 25% WASTAGE) =7,155 m^3

MOROKO B/PIT

MOROKO B/PIT

PROPOSED BORROW AREAS

PROJECT: SHIRE VALLEY IRRIGATION PROJECT

T.			150	Dm							
-							•		PIT	DEPTH OF	THICKNESS
¹ 0	0	0	0	0	0	0	0 2 -	<u> </u>	No	OVERBURDEN(m)	OF
											GRAVEL(m
0	0	0	0	0	0	0	0		1	0.00	0.72
0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0		2	0.00	0.90
0	0	0	0	30	0	0	0	100m			
~	~	~	~	~	~	~	~		3	0.00	0.60
0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0		4	0.00	0.70
40	0	0	0	0	0	0	0 ⁵		5	0.00	0.70

PIT	DEPTH OF	THICKNESS
N <u>o</u>	OVERBURDEN(m)	OF
		GRAVEL(m)

AVERAGE DEPTH OF OVERBURDEN=0.00

AVERAGE THICKNESS OF GRAVEL=0.724

ESTIMATED AVAILABLE QUANTITY (GROSS) =10,860m³

ESTIMATED AVAILABLE QUANTITY (NETT) (ALLOWING FOR 25% WASTAGE) =8,145 m^3

SOURCE: MOROKO B/PIT

CHIKHAMBI B/PIT

PROPOSED BORROW AREAS

PROJECT: SHIRE VALLEY IRRIGATION PROJECT

SOURCE: CHIKHAMBI B/PIT

			200	Om					PIT	DEPTH OF	THICKNESS
10	0	0	0	0	0	0	0 2 -	L	No	OVERBURDEN(m)	OF
									_		GRAVEL(m)
0	0	0	0	0	0	0	0		1	0.00	1.60
0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0	150m	2	0.00	0.65
0	0	0	0	0	0	0	0	12011	3	0.00	0.61
0	0	0	0	0	0	0	0		5	0.00	0.01
0	0	0	0	0	0	0	0		4	0.00	0.82
³ O	0	0	0	0	0	0	O ⁴				
									<u> </u>		

PIT N <u>o</u>	DEPTH OF OVERBURDEN(m)	THICKNESS OF
		GRAVEL(m)

AVERAGE DEPTH OF OVERBURDEN=0.00

AVERAGE THICKNESS OF GRAVEL=0.92

ESTIMATED AVAILABLE QUANTITY (GROSS) = $27,600m^3$

ESTIMATED AVAILABLE QUANTITY (NETT) (ALLOWING FOR 25% WASTAGE) = $20,700m^3$

NYAMITHUTHU B/PIT

PROPOSED BORROW AREAS

PROJECT: SHIRE VALLEY IRRIGATION PROJECT

SOURCE: NYAMITHUTHU B/PIT

PIT	DEPTH OF	THICKNESS
No	OVERBURDEN(m)	OF
		GRAVEL(m)

AVERAGE DEPTH OF OVERBURDEN=0.00

AVERAGE THICKNESS OF GRAVEL=1.26

ESTIMATED AVAILABLE QUANTITY (GROSS) = $24,570m^3$

ESTIMATED AVAILABLE QUANTITY (NETT) (ALLOWING FOR 25% WASTAGE) = $18,428m^3$

SIBALE OLD PIT

PROPOSED BORROW AREAS

PROJECT: SHIRE VALLEY IRRIGATION PROJECT

			100	Dm				
10	0	0	0	0	0	0	0 2	_
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	³ O	0	0	0	75m
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
⁴ O	0	0	0	0	0	0	O ⁵	•

PIT	DEPTH OF	THICKNESS
No	OVERBURDEN(m)	OF
		GRAVEL(m)
1	0.00	1.00
2	0.00	0.90
3	0.00	1.07
4	0.00	0.84
5	0.00	1.00

DIT	DEPTH OF	THICKNESS
NO	OVERBORDEN(m)	OF
		GRAVEL(m)

SOURCE: SIBALE B/PIT

AVERAGE DEPTH OF OVERBURDEN=0.00

AVERAGE THICKNESS OF GRAVEL=0.96

ESTIMATED AVAILABLE QUANTITY (GROSS) =7,200m³

ESTIMATED AVAILABLE QUANTITY (NETT) (ALLOWING FOR 25% WASTAGE) = $5,400m^3$

PROPOSED BORROW AREAS

PROJECT: SHIRE VALLEY IRRIGATION PROJECT

SOURCE: TOMALI EXTENDED B/PIT

			120)m							
-							•		PIT	DEPTH OF	THICKNESS
1'0	0	0	0	0	0	0	02		N <u>o</u>	OVERBURDEN(m)	OF
-	-	-	~	~	~	_	-				GRAVEL(m)
0	0	0	0	0	0	0	0		1	0.00	0.68
0	0	0	0	0	0	0	0				
	-	•	-	-			•		2	0.00	0.99
0	0	0	0	³ O	0	0	0	100m			
0	0	0	0	0	0	0	0		3	0.00	0.53
0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0		4	0.00	0.53
⁴O	0	0	0	0	0	0	0° –		5	0.00	0.55

PIT	DEPTH OF	THICKNESS
No	OVERBURDEN(m)	OF
		GRAVEL(m)

AVERAGE DEPTH OF OVERBURDEN=0.00

AVERAGE THICKNESS OF GRAVEL=0.76

ESTIMATED AVAILABLE QUANTITY (GROSS) =9,120m³

ESTIMATED AVAILABLE QUANTITY (NETT) (ALLOWING FOR 25% WASTAGE) = $6,840m^3$

Appendix B. Gravel Quantities

SHIRE VALLEY IRRIGATION PROJECT

CHIKHAMBA BORROW PIT

-			
TP NO	GPS	DEPTH M	DESCCRIPTION
1	36L 0689155	0.00-1.60	Dark brown weathered ROCK
	UTM 8225369		
2	36L 0689149	0.00-0.65	Light brown weathered ROCK
	UTM 8225415		
3	36L 0689160	0.00-0.60	Light brown weathered ROCK
	UTM 8225462		
4	36L 0689228	0.00-085	Light brown weathered ROCK
	UTM 8225422		

SOIL PROFILE

SHIRE VALLEY IRRIGATION PROJECT MOROKO BORROW PIT

SOIL PROFILE

TP NO	GPS	DEPTH M	DESCCRIPTION
1	36L 0686049	0.00-0.72	Reddish brown weathered ROCK
	UTM 8219265		
2	36L 0686070	0.00-0.90	Dark brown weathered ROCK
	UTM 8219240		
3	36L 0635988	0.00-0.60	Light brown weathered ROCK
	UTM8219314		
4	36L 0686021	0.00-0.70	Dark brown weathered ROCK
	UTM 8219340		
5	36L 0686091	0.00-0.70	Light brown weathered ROCK
	UTM 8219267		
SHIRE VALLEY IRRIGATION PROJECT CHIKALUMPHA BORROW PIT

SOIL PROFILE

ТР	GPS	DEPTH	DESCCRIPTION
NO		Μ	
1	36L 0682596	0.00-0.6	Light brown quartz GRAVEL
	UTM 8220757		
2	36L 0682686	0.00-0.73	Light brown weathered ROCK
	UTM 8220727		
3	36L 0682758	0.00-0.60	Light brown weathered ROCK
	UTM 8220743		
4	36L 0682745	0.00-0.58	Light brown weathered ROCK
	UTM 8220779		

SHIRE VALLEY IRRIGATION PROJECT NAMICHE BORR

OW PIT

SOIL PROFILE

ТР	GPS	DEPTH	DESCRIPTION
NO			
1	36L 0681935	0.00-0.57	Light brown decomposed ROCK
	UTM 8219928		
2	36L 0681963		Light brown weathered ROCK
	UTM 8219963	0.00-0.59	
3	36L 0681961	0.00-0.53	Light brown weathered ROCK
	UTM 8219945		
4	36L 0681961	0.00-0.53	Light brown weathered ROCK
	UTM 8219945		
5	36L 0681940	0.00-0.55	Light brown weathered ROCK
	UTM 8212975		

SHIRE VALLEY IRRIGATION PROJECT TOMALI BORRO

W PIT

SOIL PROFILE

ТР	GPS	DEPTH	DESCRIPTION
NO			
1	36L 0687851	0.00-0.68	Reddish brown weathered ROCK
	UTM 0687851		
2	36L 0687877	0.00-0.99	Greyish brown weathered ROCK
	utm 8211396		
3	36L 0687891	0.00-0.53	Light brown weathered ROCK
	UTM 8211440		
4	36L 06887896	0.00-0.53	Light brown weathered ROCK
	UTM 8211581		
5	36L 0681940	0.00-0.55	Light brown weathered ROCK
	UTM 8212975		

SHIRE VALLEY IRRIGATION PROJECT NYAIKA BORROW

ΡΙΤ

SOIL PROFILE

TP	GPS	DEPTH	DESCRIPTION
NO			
1	36L 0702854	0.00-0.80	Dark grey weathered ROCK
	UTM 8175508		
2	36L 0702840	0.00-0.63	Greyish brown weathered ROCK
	UTM 8175476		
3	36L 0687891	0.00-0.75	Greyish brown weathered ROCK
	UTM 8175504		
4	36L 0702961	0.00-0.80	Reddish brown weathered ROCK
	UTM 8175517		
5	36L 0702531	0.00-0.90	Whitish grey weathered ROCK
	UTM 8175568		

SHIRE VALLEY IRRIGATION PROJECT SIBAHE BORROW

ΡΙΤ

SOIL PROFILE

ТР	GPS	DEPTH	DESCRIPTION
NO			
1	36L 0724964	0.00-1.00	Whitish grey weathered ROCK
	UTM 8158935		
2	36L 0724902	0.00-0.90	Light brown weathered ROCK
	UTM 8158975		
3	36L 0724890	0.00-1.07	Greyish brown weathered ROCK
	UTM 8158999		
4	361 0724873	0.00-0.84	Whitish weathered ROCK
	UTM 8158976		
5	36L 0724893	0.00- 1.00	Greyish brown weathered ROCK
	UTM 8158952		

SHIRE VALLEY IRRIGATION PROJECT NYAMITHUTHU BORROW PIT

SOIL PROFILE

ТР	GPS	DEPTH	DESCRIPTION
NO			
1	36L 0734238	0.00-1.00	Light brown quartz GRAVEL
	UTM 8154373		
2	36L 0734228	0.00-1.20	Light brown quartz GRAVEL
	UTM 8154387		
3	36L 0734194	0.00-1.50	Light brown quartz GRAVEL
	UTM 8154407		
4	36L 0734195	0.00-1.40	Light brown quartz GRAVEL
	UTM 8154371		
5	36L 0734219	0.00- 1.20	Light brown quartz GRAVEL
	UTM 8154363		

Appendix C. Quarry Results

MINISTRY OF TRANSPORT & PUBLIC WORKS CENTRAL MATERIALS LABORATORY

CLIENT: KRC – DASAN & GK WORKS PROJECT: SHIRE VALLEY IRRIGATION PROJECT

LAB No.: 875/ACV/2016 OPERATOR: J. MASEYA DATE: 24/05/2016

QUARRY LOCATION	ACV	F.I	E.I	ORGANIC CONTENT
Kajawa	35.3	23	19	CLEAN
Thabwa	30.1	21	14	CLEAN
Nzongwe	29.0	26	20	CLEAN
Ngabu	22.0	20	18	CLEAN
Remarks:				

Appendix D. Borehole Logs

		N	INIST	RY OF	TRAN	SPOR	T AND	PUBL	LIC INFRASTRUCTURE	
					MA	TERIA	ALS LA	BORA	ATORY	
						DRILL	ING H	OLE L	.OG	
PRO	JECT		LOWE	RSHIRE V	ALLEY IR	RIGATIO	N		36L 0686863 UTM 8242746	
LOC	ATION	:	CHIKW	AWA					SURVEYED BY:	E. KACHALE
GRO	UND ELE	V:	-						LOGGED BY:	J. MASEYA
GRO	UND WA	TER LEV:							DATE:	4/4/2016
BOR	EHOLE	NO.:	BHA							
ELEV	DEPTH		DEPTH	SAMPLE	NUME	ER OF E	LOWS	SPT N	DESCRIPTION	
(m)	(m)	GRAPHIC	(m)	TYPE	IN	IN	IN	VALUE	OF	REMARKS
					150mm	150mm	150mm	300mm	MATERIAL	
	0.00									
			0.40						Loose dark brown clayey silty SAND	
		*_*_*_*_*_*_*								
	1.00	*_*_*_*_*_*								
		*_*_*_*_*_*								
		*_*_*_*_*_*								
			1.70	SPT	55++					48mm penetr
		*_*_*_*_*_*_*								
-	2.00	*_*_*_*_*_*_*							Filrm light brown clayey silty SAND with	
		*_*_*_*_*_*_*	2.18						some stones	END OF BH
UD		=	Undisturbed Sample *-*-*-*		*_*_*_*_*	= Sand	d			
N		=	SPT N-	Value			= Grav	el		
D		=	Disturk	ed Samp	le		= Silt			
							= Clay			
							= Deco	ompose	d Rock	

			MINIS	TRY O	TRA	NSPO	RT AN	D PUE	BLIC INFRASTRUCTURE	
					M	ATER	IALS L	ABOR	ATORY	
						DRIL	LING	HOLE	LOG	
PROJI	ECT		LOWER	SHIRE V	ALLEY I	RRIGATIC	N		36K 0687007, UTM 8242013	
LOCA	TION	:	CHIKW	AWA				-	SURVEYED BY:	E. KACHALE
GROU	ND ELE	:	-						LOGGED BY:	J. MASEYA
GROU	IND WA	FER LEVEL							DATE:	4/2/2016
BORE	HOLE N	0.	1							
ELEV	DEPTH		DEPTH	BAMPLE	NUME	BER OF B	LOWS	SPT N	DESCRIPTION	
(m)	(m)	GRAPHIC	(m)	TYPE	IN	IN	IN	VALUE	OF	REMARKS
					150mm	150mm	150mm	300mm	MATERIAL	
	0.00	*_*_*_*_*_*_*								
			0.75						Loose dark brown sandy silty CLAY	
	1.00									
			1.50	SPT	9	10	6	16		
	2.00	*_*_*_*_*_*	1.90						Firm reddish brown clayey silty sand with	
									some particles of weathered ROCK	
	3.00	*_*_*_*_*_*_*								
			3.00	SPT	5	10	15	25		
	4.00		3.25						Firm light brown sandy SILT	
		*_*_*_*_*_*_*	3.47						Dense light brown fine SAND	
		*_*_*_*_*_*_*	4.50	SPT	17	17	29	46		
	6.00	*_*_*_*_*_*_*	5.20						Dense light brown medium to coarse sand	
		*_*_*_*_*_*_*							mixed with some PEBBLES	
		*_*_*_*_*_*_*	6.33	SPT	33	55++				140 pentration
	7.00	*_*_*_*_*_*_*	6.47						Dense dark brown medium SAND with	
		*_*_*_*_*_*_*		SPT	3	5	8	13	some pebbles	
		*_*_*_*_*_*_*							mixed with pebbles	END OF B.H.
UD		=	Undistu	Irbed Sai	nple	*_*_*_*_*	= San	d		
N		=	SPT N-	Value			= Grav	vel		
D		-	Disturb	ed Samp	le		= Silt			
							= Clay			
							= Dec	ompose	d Rock	

		м	INIST	RY OF	TRAN	ISPOF		D PUB	LIC INFRASTRUCTURE	
					M	ATERI	ALS L	ABOR	ATORY	
						DRIL	LING	HOLE	LOG	
						10.5019045/10.1	100000			
PROJ	IECT		LOWE	RSHIREV	ALLEY	IRRIGAT	ION	_	36K 0686995 UTM 8241999	
LOCA	TION	:	CHIKW	AWA				_	SURVEYED BY:	E. KACHALE
GROU	JND ELI	=V:							LOGGED BY:	J. MASEYA
GROU		ATER LEVE							DATE:	4/2/2016
BORE	HOLE	1	2					0.07.11	DECODIDITION	
ELEV	DEPTH		DEPTH	SAMPLE	NUME			SPIN	DESCRIPTION	
(m)	(m)	GRAPHIC	(m)	TYPE	150.000	150	150	VALUE		REMARKS
					150mn	TSUMM	150mm	Suomn	MATERIAL	-
<u> </u>	0.00		0.50					<u> </u>	Loose dark brown clavey sandy SILT	
	0.00	*_*_*_*_*_*_	*						Ecoso dan brown clayby sandy cle r	
			1.05			40				
			1.95	SPT	9	10	9	19		
	1.00	* * * * * *	1.07							
	1.00		1.97					<u> </u>	Firm reddish brown clayey silty SANL	
	2.00		2.06						Dense light brown weathered ROCK	
	2.00		2.90					<u> </u>	with some cobbles	
	3.00	*.*.*.*.*.*.	1 *							
	0.00	*_*_*_*_*_*	3 4 5	SPT	4	9	14	23		
	4.00		0.10	0.1				20		
	5.00		4.95	SPT	8	16	22	38		
		*_*_*_*_*_*_	5.22						Firm light brown sandy SILTY	
	6.00	*_*_*_*_*_*_	5.50						Dense light brown medium SAND	
		*_*_*_*_*_*_	6.50	SPT		55++				Pentr 70mm
	7.00	*_*_*_*_*_*_	*							
UD		=	Undist	urbed Sa	mple	*_*_*_*_*	= San	d		
N		=	SPT N	-Value			= Gra	vel		
D		=	Distur	bed Sam	ple		= Silt			
							= Clay	/		
							= Dec	ompose	d Rock	

		м	NIST	RYOF	TRAN	SPOR		D PUB	LIC INFRASTRUCTURE	
					MA	TERIA	ALS LA	ABOR	ATORY	
			1	1	-	DRILL	ING F	IOLEI	LOG	1
PRO	FCT		LOWE	DS LIDE V		IPPICAT			36K 0686085 LITM 824150	
LOCA					ALLEI	IKKIGAT			SURVEYED BY:	
GROI		· ·	-		1	-			LOGGED BY:	I MASEYA
GROL		TER LEV:	-			-		-	DATE:	4/2/2016
BORE	HOLE	NO.:	3		-	-	-		Din Li	11212011
ELEV	DEPTH	1	DEPTH	SAMPLE	NUM	BER OF E	BLOWS	SPT N	DESCRIPTION	
(m)	(m)	GRAPHIC	(m)	TYPE	IN	IN	IN	VALUE	OF	REMARKS
					150mr	150mn	150mm	300mm	MATERIAL	
	0.00		0.20						Loose dark brown silt SAND	
		*_*_*_*_*_*_*								
-										
		*_*_*_*_*_*_*	0.55						Film greyish brown clayey SAND	Fill material
		*_*_*_*_*_*_*							mixed with quarry stone	
	1.00	*_*_*_*_*_*_*								
	-		1.25					-	Firm dark brown sandy silty CLAY with	
	-							L	some particles of weathered ROCK	
		*_*_*_*_*_*	1.45						Stiff dark brown silty sandy silty clay	
									mixed with quartz GRAVEL	
			4.50	ODT		10	10			-
	2.00		1.50	SPT	9	10	12	22		
	2.00		-			-				
		* * * * * * *	2.68						Firm light brown clayov SAND with some	
		* * * * * * *	2.00						particles of weathered ROCK	
							-	<u> </u>		
			-							
	3.00		3.00	SPT	11	14	19	33		
		-								
			-							
						<u> </u>		<u> </u>		
	4.00									
			4.50	SPT	14	9	21	30		
	5.00	*.*.*.*.*.*.*								
		*_*_*_*_*_*_*	5.45						Firm yellowish brown silty clayey SAND	
		*_*_*_*_*_*								
	6.00			SPT	17	21	22	43		
			6.25				1		Firm light brown sandy SILT	
		*_*_*_*_*_*_*								
	7.00	*_*_*_*_*_*_*	7.50	SPT	8	19	21	40		
		*_*_*_*_*_*_*	7.50						Dense fine SAND with some pebbles	
		*_*_*_*_*_*_*								
	8.00	*_*_*_*_*_*_*								
		*_*_*_*_*_*_*								
		*_*_*_*_*_*	8.75						Dense greyish medium SAND	
	9.00	*_*_*_*_*_*_*								
		*_*_*_*_*_*	9.55	SPT		55++			Dense greyish medium to coarse SAND	No penetr
		*_*_*_*_*_*						_	with some pebbles	
		*_*_*_*_*_*								-
UD		=	Undist	urbed Sa	mple	*_*_*_*_*	= Sar	nd		
N		-	SPT N-	Value	L		= Gra	vel		
U		-	Distur	oed Sam	ple		= Silt	1		-
								y	d Pook	
1							- Dec	ompose	SU NOCK	

46

		м	INIST	RY OF	TRAM	VSPOR	RT AN	ID PUE	3LIC INFRASTRUCTURE	
					M	ATERI	ALS L	ABOR	ATORY	
						DRIL	LING	HOLE	LOG	
PROJ	ECT		LOWE	RSHIRE	ALLEY	IRRIGAT	TION		36K 0686945 UTM 8240902	
LOCA	TION	:	CHIKW	AWA					SURVEYED BY:	E. KACHALE
GROL	GROUND ELEV:		-						LOGGED BY:	J. MASEYA
GROL	IND W	ATER LEV:							DATE:	4/2/2016
BORE	HOLE	NO.:	4							
ELEV	DEPTH	4	DEPTH	BAMPLE	NUME	SER OF B	LOWS	SPT N	DESCRIPTION	
(m)	(m)	GRAPHIC	(m)	TYPE	IN	IN	IN	VALUE	OF	REMARKS
					150mn	150mm	150mn	300mm	MATERIAL	
	0.00		0.64						Very loose dark brown clayey silty SAND	
		..*.*.*.*.*								
								 		1
			 							
		..*.*.*.*.*								
			0.95						Loose dark brown clayey sandy SILT	
	1.00									
			1.75						Whitish grey weathered ROCK	
			1.95	SPT	8	9	11	20		
	2.00		L							
			<u> </u>							
										
			<u> </u>							
			<u> </u>		-					
	2.00		<u> </u>							
	3.00		2.02	CDT	EE 1 1		<u> </u>		Hard graviah brown decomposed POCh	
			3.02	SPI	55++		──		Hard greyish brown decomposed ROCh	20mm penetr
		-	Undiat		melo	* * * * *		<u> </u>		
N		-	SPT N.	Value	imple		- 3ai			
D		-	Distur	hed Sam	nle			Vei		
-			Diotari		p.0		= Cla	v		
							= Dec	ompose	d Rock	

		MIN	ISTRY	Y OF T	RANS	PORT	AND	PUBLI	C INFRASTRUCTURE	
					MAT	ERIAL	S LAE	BORAT	ORY	
					D	RILLIN	NG HC	LE LC)G	
PRO.	JECT:		LOWER	RSHIRE V	ALLEY	RRIGATI	ON		36L 0686466 UTM 8239849	
LOC	ATION	:	CHIKW	AWA					SURVEYED BY:	E. KACHALE
GRO	UND ELE	EV:	-						LOGGED BY:	J. MASEYA
GRO		TER LEV:							DATE:	4/4/2016
BOR	E HOLE	NO.:	5							
ELEV	DEPTH		DEPTH	SAMPLE	NUME	BER OF B	LOWS	SPT N	DESCRIPTION	
(m)	(m)	GRAPHIC	(m)	TYPE	IN	IN	IN	VALUE	OF	REMARKS
					150mm	150mm	150mm	300mm	MATERIAL	
	0.00									
		*_*_*_*_*_*_*	0.85						Loose grevish brown clavev	
		*_*_*_*_*_*_*	0.00						some gravels	imported
	1.00	*_*_*_*_*_*_*								material
	1.00	*_*_*_*_*_*_*								
		*_*_*_*_*_*_*	1.50	SPT	7	11	9	20		
			1.00					20		
	2.00									
		and any many of	-							
			-							
			2.82						Firm dark brown sandy silty CLAY	
	3.00	*_*_*_*_*_*_*	3.00	SPT	8	11	11	22		
								-		
			3.45						Firm light brown clayey sandy SILT	END OF B.H.
UD		=	Undistu	urbed Sa	mple	*_*_*_*_*	= San	d		
N		=	SPT N-	Value			= Gra	vel		
D		=	Disturb	ed Sam	ple	2×2×2×2×2×2×2×2×2×2×2×2	= Silt			
							= Clay	,		
							= Dec	ompose	d Rock	

		м	INIST	RY OF	TRAN	SPORT	AND	PUBL	IC INFRASTRUCTURE	
					M	ATERIAL	SLA	BORA	TORY	
						DRILLI	NGHO		DG	
PRO	JECT		LOWE	RSHIRE	ALLEY	IRRIGATION	1		36K 0686464 UTM 8237567	
LOC	ATION	:	CHIKW	AWA					SURVEYED BY:	E. KACHALE
GRO	UND ELE	EV:	-						LOGGED BY:	J. MASEYA
GRO		TER LEV:							DATE:	4/4/2016
BOR	E HOLE	NO.:	6							
ELEV	DEPTH		DEPTH	BAMPLE	NUN	IBER OF BL	ows	SPT N	DESCRIPTION	
(m)	(m)	GRAPHIC	(m)	TYPE	IN	IN	IN	VALUE	OF	REMARKS
					150mn	150mm	150mm	300mm	MATERIAL	
	0.00									
		*_*_*_*_*_*_*								
<u> </u>			0.64							
			0.61						Loose dark brown silty sandy CLAY	
	1 00	*_*_*_*_*_*								
	1.00				-					
<u> </u>			1.50	ерт	7	0	0	19		
			1.50	3F1	,	9	3	10		-
<u> </u>			1.90						Firm vellowish brown sandy silty CLA	4
	2.00									
		*_*_*_*_*_*_*								
										-
			2.56						Firm light brown silty sandy with	
									particles of weathered ROCK	
		*_*_*_*_*_*_*								
	3.00		3.00	SPT	8	13	13	26		
			3.45						Firm ligth brown sandy SILT	END OF B.H.
UD		=	Undist	urbed Sa	ample	*_*_*_*_*_*_*	= San	d		
N		=	SPT N-	Value			= Gra	vel		
D		=	Distur	oed Sam	ple		= Silt			
							= Clay	/		
							= Dec	ompose	ed Rock	

		I	MINIS	TRY OF	TRA	ISPO	RT AN	ID PUI	BLIC INFRASTRUCTURE	
					M	ATER	IALS L	ABOR	RATORY	
						DRIL	LING	HOLE	LOG	
PRO	JECT		LOWE	RSHIRE V	ALLEY IF	RIGATIO	NC		36K 0686302 UTM 8235950	
LOC	ATION	:	CHIKW	AWA					SURVEYED BY:	E. KACHALE
GRO	JND ELI	EV:	-						LOGGED BY:	J. MASEYA
GRO		ATER LEV:							DATE:	4/5/2016
BOR	EHOLE	NO.:	7							
ELEV	DEPTH		DEPTH	SAMPLE	NUMB	ER OF B	LOWS	SPT N	DESCRIPTION	
(m)	(m)	GRAPHIC	(m)	TYPE	IN	IN	IN	VALUE	OF	REMARKS
					150mm	150mm	150mn	300mm	MATERIAL	
	0.00									
		*_*_*_*_*_*_*								
			0.82						Loose dark brown gravely sandy silty CLAY	
	1.00	*_*_*_*_*_*_*								-
		5	1.37						Firm light brown sandy silt mixed with	
									weathered ROCK	
		*_*_*_*_*_*_*	1.50	SPT	15	10	8	18		
		*_*_*_*_*_*_*								
	2.00		2.00						Firm yellowish brown sandy SILT	
		*_*_*_*_*_*								
	3.00	*_*_*_*_*_*_*	3.00	SPT	15	17	18	35		
		*_*_*_*_*_*_*								
		*_*_*_*_*_*_*	3.45						Firm light brown clayey silty SAND with	
		*_*_*_*_*_*							some cables and bounders	END OF B.H.
UD		=	Undist	urbed Sa	mple	*_*_*_*_*	= Sar	nd .		
N		=	SPTN	-Value			= Gra	vel		
		-	Distur	bed Samp	ne		= Silt			
								y	d Pook	
							= Dec	ompose		

			MINIS	TRYO	F TRA	NSPO	RT AN	ID PU	BLIC INFRASTRUCTURE	
					M	IATER	IALS I	ABOF	RATORY	
						DRIL	LING	HOLE	LOG	
PRO	JECT		LOWE	RSHIRE V	ALLEY I	RRIGATIC	N		36K 0686844 UTM8233600	
LOC	ATION	:	CHIKW	AWA					SURVEYED BY:	E. KACHALE
GRO	UND ELE	EV:	-						LOGGED BY:	J. MASEYA
GRO		TER LEV:							DATE:	4/6/2016
BOR	EHOLE	NO.:	7a							
ELEV	DEPTH		DEPTH	SAMPLE	NUMB	ER OF B	LOWS	SPT N	DESCRIPTION	
(m)	(m)	GRAPHIC	(m)	TYPE	IN	IN	IN	VALUE	OF	REMARKS
					150mm	150mm	150mm	300mm	MATERIAL	
	0.00	*_*_*_*_*_*_*								
	0.00		0.30						Veryloose dark brown sandy SILT	
	1.00		0.00						Very loose dark brown sandy cie i	
	1.00		L							
			1.50	SPT	17	23	26	49		
	2.00		1.00	0		20	20	40		
			2.35						Loose dark grey micaceous decompose	70mm penetr
			2.40	CPT	46	55++			ROCK	
	3.00		2.69						Dense dark grey micaceous weathered	
									ROCK	END OF BH
UD		=	Undist	urbed Sa	mple	* * * * *	= San	d		
N		=	SPT N-	Value			= Gra	vel		
D		=	Distur	bed Sam	ple		= Silt			
							= Clay	/		
							= Dec	ompose	ed Rock	

		М	INIST	RYOF	TRAN	SPOR	T AND	PUB	LIC INFRASTRUCTURE	
					MA	TERIA	LSLA	BORA	ATORY	
						DRILL	ING H	OLE L	.OG	
PRO.	JECT		LOWER	SHIRE V	ALLEY IF	RIGATIC	N		36K 0688127 TUM 82.8371	
LOCA	ATION	:	CHIKW	AWA					SURVEYED BY:	E. KACHALE
GROU	UND EL	EV:	•						LOGGED BY:	J. MASEYA
GROU		ATER LEV:							DATE:	4/6/2016
BOR	E HOLE	:	9							
ELEV	DEPTH		DEPTH	SAMPLE	NUME	3ER OF B	LOWS	SPT N	DESCRIPTION	
(m)	(m)	GRAPHIC	(m)	TYPE	IN	IN	IN	VALUE	OF	REMARKS
					150mm	150mm	150mm	300mm	MATERIAL	
	0.00									
			0.54						Firm dark brown silty CLAY	
	1.00									-
			1.50	SPT	8	9	9	18		
			1.99						Firm arevish brown weathered ROCK	
	2.00									-
									-	
	3.00		3.00	SPT	55++				Dense vellowish brown decomposed	No penetr
									ROCK	END OF BH
UD		=	Undistu	urbed Sar	mple	*_*_*_*	= San	d		
N		=	SPT N-	Value			= Grav	vel		
D		=	Disturb	ed Samp	le		= Silt			
							= Clay	,		
							= Dec	ompose	d Rock	

		M	IINIST	RY OF	TRAN	ISPO	RT AN	ID PU	BLIC	INFRASTRUCTURE	
					M/	ATER	IALS I		RATO	RY	
		1		1		DRIL	LING	HOLE	: LOG	1	
			-								
								-			
PRO	JECT	:	LOWER	RSHIRE	VALLEY	IRRIGA	TION				
LOCA	ATION	:	CHIKW	AWA					SURVE	YED BY:	E. KACHAL
GROL	JND ELE	.v.:	-					<u> </u>	LOGGE	ED BY:	J. MASEYA
GROU	JND WA	TER LEV:	-						DATE:		3/22/2016
BORE	HOLE	10. .T	10	CEDTI	AUGERI	NG PO:	SITIONS			DESCRIPTION	+
ELEV.	(m)	CRAPHIC	(m)	(m)	TYPE				VALUE		DEMARKS
(11)	(11)	GRAPHIC	(11)	(m)	TTPE	150mr	150mm	150mm	300mm	MATERIAI	REWARKS
	0.00			├──	+'	100111			300111		+
	0.00				1				/		
	['				-				1 7		
			1	0.40						Loose sandy brown sandy SILT	
	0.50				/				/		
	 '				'			'	Ļ/		
	└ ──′				'		'	'	└──'		
\vdash	–				+'			<u> </u>		I	
	\vdash									I	-
\vdash	1.00									1	-
									l /		
					1						
										l	
	l'										
	1.50								\square	I	
	L'				'				\vdash		
	L'		1.65	_	'		<u> </u>	 	↓ ′	Loose reddish brown silty CLAY	Ļ
	′						<u> </u>	<u> </u>	└── ′		
\vdash	\vdash		4'				<u> </u>	<u> </u>			
\vdash	\vdash			-						l	-
\vdash	2.00				1				1		-
					1				<u> </u>		-
			4							1	
					1						
	2.50										
	L'		<u> </u>		/			'	L/		
					'			/	↓ ′		
<u> </u>	3.00		3.00				L		ىپ	Firm greyish brown sandy silty CLAY	END OF BI
UD		-	Undist:	urbed S	ample			= San	Id		-
		-	Distur	Value bod Sar	anle			= Gra	vei		-
Ľ		-	Dista	Jeu Gall	The			= Cla	v		
1						-	_	= Der	, compos	ed Rock	-
							-	4			

			N	INISTR	RY OF TR	ANSPO	RT AND	PUBLI	C INFR/	ASTRUCTURE	
					I	ATER	ALS LA	BORAT	ORY		
		1			1	DRIL	LING HO	OLE LO	G		1
PRO	FCT		LOWE			PICATIC					
LOCA			CHIKW		VALLET IN	RIGATIC			SURVE		
GROU			-				-		LOGGE	D BY	L MASEYA
GROU	NDWAT	ER LEV:							DATE:		3/22/2016
BORE	HOLEN	0.:	11						Brite.		0/22/2010
ELEV.	DEPTH		DEPTH	DEPTH	SAMPLE	NUME	BER OF B	LOWS	SPT N	DESCRIPTION	
(m)	(m)	GRAPHIC	(m)	(m)	TYPE	IN	IN	IN	VALUE	OF	REMARKS
	()					150mm	150mm	150mm	300mm	MATERIAL	
-	0.00	*_*_*_*_*_*_*_*_									
		*_*_*_*_*_*_*_									
	0.50	*******									

		..*.*.*.*.*.									
		*******	0.95							Loose greyish brown SAND	
	1.00										
_	1.50							-			_
				-							-
							-				
			1.84				-			Loose darkish brown clavey SILT	
		*******					1		1		-
-	2.00	ددددددد					-				-
-		******		-	· · · · · · · · · · · · · · · · · · ·						
	2.50										
	3.00										
			3.00							Firm brown sandy silty CLAY	
UD		=	Undist	urbed Sa	ample		*_*_*_*_*	= San	nd		
N		-	SPT N-	Value				= Gra	vel		
D I		-	Disturk	bed Sam	ple						-
									omnoco	d Rock	
<u> </u>			-	-				- Dec	Sinpose		

		N	IINIST	RYOF	TRAN	SPOR	T ANI	D PUB	LIC INFRASTRUCTURE	
					MA	TERI	ALS L	ABOR	ATORY	
						DRILI	LINGH	IOLE	LOG	
PRO.	JECT		LOWER	SHIRE V	ALLEY IF	RRIGATIO	ON		36K 0685873 UTM 8224065	
LOCA	ATION	:	CHIKW	AWA					SURVEYED BY:	E. KACHALE
GROU	JND EL	EV:	-						LOGGED BY:	J. MASEYA
GROU		TER LEV:							DATE:	3/28/2016
BOR	HOLE	NO.:	12							
ELEV	DEPTH		DEPTH	SAMPLE	NUME	ER OF B	LOWS	SPT N	DESCRIPTION	
(m)	(m)	GRAPHIC	(m)	TYPE	IN	IN	IN	VALUE	OF	REMARKS
					150mm	150mm	150mm	300mm	MATERIAL	
	0.00									
		*_*_*_*_*_*_*	0.41						Loose dark brown clavey sandy SILT	
			0.11							
									Firm dark brown sandy silty CLAY with	-
			0.52						some particles of weathered BOCK	
	1 00		0.85						Dense sandy silty CLAY quartz GRAVEL	
	1.00		0.00							
			1.35						Moltted decomposed BOCK	
			1.00							
			1.50	SPT	17	23	26	49		
				0		20				
	2.00		-							
		•	-							
			2.80						Hard greyish brown weathered ROCK	END OF BH
	3.00									
UD		=	Undistu	Irbed Sar	nple	*_*_*_*_*	= San	d		
N		-	SPT N-	Value			= Gra	vel		
D		=	Disturb	ed Samp	le		= Silt			
							= Clay	/		
							= Dec	ompose	d Rock	

		MI	NISTE	RY OF	TRANS	SPOR	T AND	PUBL	LIC INFRASTRUCTURE	
					MA	TERIA	LS LA	BORA	ATORY	
					J	DRILL	ING H	OLE L	OG	
PRO.	JECT		LOWER	SHIRE V	ALLEY IF	RRIGATIC	NC		36K 0585726 UTM 8222502	
LOC/	ATION	:	CHIKW	AWA					SURVEYED BY:	E. KACHALE
GRO	UND ELE	V:	-						LOGGED BY:	J. MASEYA
GRO	JND WA	TER LEV:							DATE:	3/27/2016
BOR	EHOLE	:	13							
ELEV	DEPTH		DEPTH	SAMPLE	NUMB	ER OF B	LOWS	SPT N	DESCRIPTION	
(m)	(m)	GRAPHIC	(m)	TYPE	IN	IN	IN	VALUE	OF	REMARKS
					150mm	150mm	150mm	300mm	MATERIAL	
	0.00	*_*_*_*_*_*_*	0.63						Firm dark brown sandy silty CLAY	
			1.50	SPT	12	22	34	56		
			1.80				34		Firm moltted decomposed ROCK	
			1.00			\vdash				
	2.00									
	2.00		3.00	SPT	55++					20mm penetr
			3.20		00 1				Dense vellowish brown decomposed	Lonnipener
			0						ROCK	END OF BH
UD		=	Undist	urbed Sa	mple	*_*_*_*_*	= San	d	1	
N		=	SPT N-	Value	· ·		= Gra	vel		
D		=	Disturb	ed Samp	ole		= Silt			
							= Clay	,		
							= Dec	ompose	d Rock	

		м	INISTF	RY OF T	RANS	SPOR	T AND	PUBL	IC INFRASTRUCTURE						
	MATERIALS LABORATORY DRILLING HOLE LOG														
						RILL	ING H	OLE L	OG						
PROJ	JECT		LOWER	SHIRE VA	LLEY IR	RIGATIC	N								
LOCA	TION	:	CHIKW	AWA					SURVEYED BY:	E. KACHALE					
GROU	JND ELE	V:	-						LOGGED BY:	J. MASEYA					
GROU	JND WA	TER LEV:							DATE:	3/27/2016					
BORE	BORE HOLE NO.: 14 ELEV DEPTH DEPTH SAMPLE NUMBER OF BLOWS SPT N DESCRIPTION														
ELEV	DEPTH		DEPTH	SAMPLE	NUMB	BER OF B	LOWS	SPT N	DESCRIPTION						
(m)	(m)	GRAPHIC	(m)	TYPE	IN	IN	IN	VALUE	OF	REMARKS					
					150mm	150mm	150mm	300mm	MATERIAL						
	0.00														
			0.30						Firm dark brown sandy silty CLAY						
		*_*_*_*_*_*_*													
			0.60						Dense light brown sandy silty CLAY						
	1.00								with some pebbles						
			1.50	SPT	55+					80mm penetr					
							1								
	2.00														
			2.30						Hard greyish brown weathered ROCK	END OF BH					
UD		=	Undistu	Irbed San	nple	*_*_*_*_*	= San	d							
N		=	SPT N-	Value			= Gra	vel							
D		=	Disturb	ed Sampl	е		= Silt								
							= Clay	/							
							= Dec	ompose	ed Rock						

		М	NISTE	RY OF	TRANS	SPORT		PUBL	IC INFRASTRUCTURE	
					MA	TERIA	LS LA	BORA	TORY	
					[DRILLI	NG HO	DLE LO	DG	
PRO	JECT		LOWER	RSHIRE V	ALLEY IF	RRIGATIC	N		36K 0685374 UTM 8217814	
LOC	ATION	:	CHIKW	AWA					SURVEYED BY:	E. KACHALE
GRO	UND EL	.EV:	-						LOGGED BY:	J. MASEYA
GRO	UND W	ATER LEV:							DATE:	3/25/2016
BOR	e hole	NO.:	15							
ELEV	DEPTH	4	DEPTH	SAMPLE	NUMB	BER OF B	LOWS	SPT N	DESCRIPTION	
(m)	(m)	GRAPHIC	(m)	TYPE	IN	IN	IN	VALUE	OF	REMARKS
					150mm	150mm	150mm	300mm	MATERIAL	
	0.00									
			0.30				ſ		Loose darkish brown silty CLAY	Top soil
										- ·
	1.00									
			1.50	SPT	8	10	18	28		
	2.00									
			2.50						Firm whitish grey decomposed ROC	c
	3.00		3.00	CPT	26	52	55	107		
			3.45						Dense yellowish brown weathered	
									ROCK	END OF BH
UD		=	Undist	urbed Sa	mple	*_*_*_*_*	= San	d		
Ν		=	SPT N-	Value			= Grav	vel		
D		=	Disturb	ed Samp	ole		= Silt			
							= Clay			
							= Dec	ompose	d Rock	

		MI	NISTR	Y OF T	RANS	SPOR	T AND	PUBL	IC INFRASTRUCTURE	
					MA	TERIA	LS LA	BORA	TORY	
					I	DRILL	ING H	OLE L	OG	
PROJ	JECT		LOWEF	RSHIRE V.	ALLEY I	RRIGATI	ON			
LOCA	TION	:	CHIKW	AWA					SURVEYED BY:	E. KACHALE
GROU	JND ELE	V:	-						LOGGED BY:	J. MASEYA
GROU	JND WA	TER LEV:							DATE:	3/24/2016
BORE	HOLE	NO.:	16							
ELEV	DEPTH		DEPTH	SAMPLE	NUME	BER OF E	BLOWS	SPT N	DESCRIPTION	
(m)	(m)	GRAPHIC	(m)	TYPE	IN	IN	IN	VALUE	OF	REMARKS
					150mm	150mm	150mm	300mm	MATERIAL	
	0.00	*_*_*_*_*_*_*								
		*_*_*_*_*_*_*							Veryloose darkish brown sandysilty	
									CLAX	
			0.78							
	1.00									
		*_*_*_*_*_*_*_*								
			1.30						Loose dark brown clayey sandy SILT	
		*_*_*_*_*_*_*								
		*_*_*_*_*_*_*								
		*_*_*_*_*_*_*	1.50	SPT	6	5	3	8		
	2.00	*_*_*_*_*_*_*								
		*_*_*_*_*_*_*								
		*_*_*_*_*_*_*								
		*_*_*_*_*_*_*	2.70						Ligh brown fine SAND	
		*_*_*_*_*_*_*								
		*_*_*_*_*_*								
	3.00	*_*_*_*_*_*_*	3.00	SPT	8	6	9	15		
		*_*_*_*_*_*_*								
		*_*_*_*_*_*_*	0.45							
		^_^_^_	3.45						Greyish brown medium to coarse SANL	END OF BH
		-	Undiet	urbed Ser	mple	*_*_*_* *	= San	d		
N		-	SPT N-	Value	npie		= Grav	vel		
D		=	Disturb	ed Samn	le		= Silt			
[= Clay			
							= Dec	ompose	d Rock	
							200			1

		MIN	NISTR	Y OF 1	RANS	PORT	AND	PUBL	IC INF	RASTRUCTURE	
					MAT	ERIA		BORA	TORY		
					D	RILLI	NGHC		OG		
PRO.I	FCT		LOWE	SHIRE		RRIGATI	ON				
LOCA	TION	:	CHIKW	AWA					SURVE	YED BY:	E. KACHALE
GROU	ND ELEV	·	-						LOGGE	D BY:	J. MASEYA
GROU	ND WAT	ER LEV:	-						DATE:		3/22/201
BORE	HOLE N	D.:	16a								
ELEV.	DEPTH		DEPTH	DEPTH	SAMPLE	NUMB	ER OF B	LOWS	SPT N	DESCRIPTION	
(m)	(m)	GRAPHIC	(m)	(m)	TYPE	IN	IN	IN	VALUE	OF	REMARKS
						150mm	150mm	150mm	300mm	MATERIAL	
	0.00	*_*_*_*_*_*_*_									
		*_*_*_*_*_*_*_							-		
	1.00		1.40							l	
		* * * * * * * *	1.10							Loose dark brown sandy SIL I	
		*_*_*_*_*_*_*_*	t								
	2.00										
			2.10							Firm brown sandy silty CLAY	
	3.00										
	0.00										
	4.00										
	5.00										
	6.00										
		_	Undiati	urbod C.			*_*_* * *	- 54			
N		-	SPT N.	Value	ampie			= Gra	vel		
D		=	Disturb	ed Sam	ple			= Silt			
								= Cla	y		
								= Dec	ompose	d Rock	

		MI	NISTR	YOF	TRANS	PORT	AND	PUBL	IC INF	RASTRUCTURE	
					MAT	ERIA		BORA	TORY		
						RILLI	NGH		OG		
	ст		LOWER			PICATIC					
			CHIKW			RIGATIC			SUDVE		
GPOU			CHIKW	AWA					LOGGE		L MASEVA
GROUI		 FR I EV·							DATE		3/22/201
BORE).	17						Ditte.		GILLILOT
ELEV.	DEPTH		DEPTH	DEPTH	SAMPLE	NUMB	ER OF B	LOWS	SPT N	DESCRIPTION	
(m)	(m)	GRAPHIC	(m)	(m)	TYPE	IN	IN	IN	VALUE	OF	REMARKS
(,	(,		(,	(,		150mm	150mm	150mm	300mm	MATERIAL	
	0.00	*_*_*_*_*_*_*									
		*_*_*_*_*_*_*									
	1.00	*_*_*_*_*_*_*									
		*_*_*_*_*_*_*_*									
		*_*_*_*_*_*_*									
	2.00										
								_			
										Very loose greuish brown sand	
	3.00		3.00				_			clayey SILT	
	4.00			-							
	5.00										
	6.00										
UD		=	Undistu	rbed Sa	mple		*_*_*_*_*	= San	d		
N		=	SPT N-	/alue				= Gra	vel		
D		=	Disturb	ed Sam	ple			= Silt			
								= Clay	/		
								= Dec	ompose	d Rock	

		MI	NISTR	Y OF T	RANS	SPOR	T AND	PUB	LIC INFRASTRUCTURE	
					MAT	FERIA	LS LA	BORA	ATORY	
			1			RILL	ING H	OLE L	.OG	1
								-		
PROJ	ECT		LOWER	RSHIRE V		RRIGATI	ON			
LOCA	TION	:	CHIKW	AWA						E. KACHALE
GROU	IND ELE	EV:	-						LOGGED BY:	J. MASEYA
GROU		ATER LEV:	10					-	DATE:	3/24/2010
BURE	DEDTL	NO.:						ODT N	DESCRIPTION	-
ELEV	DEP In	CRAPHIC	DEP In	SAWPLE				SPIN	DESCRIPTION	DEMARKS
(m)	(m)	GRAPHIC	(m)	TIPE	150mm	150mn	150mm	200mm		REMARNS
					1.501111	130111	150111	3001111	WATENAL	
\vdash	0.00	*_*_*_*_*_*_*								+
	0.00		0.45							_
		*_*_*_*_*_*	0.15						Very loose dark brown clayey sandy	
									SILTY	
			0.30						Loose dark brown sandy silty CLAY	
	1.00		0.70						Firm light brown silt CLAY	
		*_*_*_*_*_*_*								
		*_*_*_*_*_*								
		*_*_*_*_*_*_*	1.50	SPT	6	8	11	19		
		*_*_*_*_*_*_*								
		*_*_*_*_*_*								
	2.00									
										_
		*_*_*_*_*_*_*	2.90						Firm dark brown sandy silty CLAY	_
	3.00	*_*_*_*_*_*_*	3.00	SPT	7	7	8	15		
		*_*_*_*_*_*							A band of yellowish brown sandy SILT	-
		*_*_*_*_*_*_*								
		*_*_*_*_*_*_*								_
										_
	4.00	*_*_*_*								_
	4.00									
		_	4.50	PPT	5	8	9	17		
			4.50	SFI	5	0	5	17		
	5.00									-
	0.00									-
			6.00	SPT	6	9	10	19		-
	5.60		6,45	0			10		Stiff dark brown sandy silty CLAY	END OF BH
UD		=	Undist	urbed Sa	mple	*_*_*_*_*	= San	l		
N		=	SPT N-	Value			= Gra	vel		
D		=	Disturb	bed Samp	ole		= Silt	1		
			-				= Clay	v		
1.1.1				-			2 -			

		M	IINIST	RY OF	TRAN	SPOF		D PUB	LIC IN	FRASTRUCTURE	
					MA	TERI	ALS LA	ABOR	ATOR	Y	
						DRILI		IOLE I	OG		
PROJ	ECT	:	LOWER	RSHIRE	ALLEY I	RRIGATI	ON				
LOCA	TION	:	CHIKW	AWA					SURVE	YED BY:	E. KACHALE
GROL	JND ELE	V.:	-						LOGGE	D BY:	J. MASEYA
GROU	IND WA	TER LEV:	-						DATE:		3/22/2016
BORE	HOLE	NO.:	20	DEDTU					OPTN	DESCRIPTION	
ELEV.	DEPTH	CDADUIC	DEPTH	DEPTH					SPIN	DESCRIPTION	DEMADIZO
(m)	(m)	GRAPHIC	(m)	(m)	TTPE	150mm	150mm	150mm	200mm	OF	REWIARKS
						150mm	1501111	1501111	30011111	MATERIAL	
<u> </u>	0.00	*_*_*_*_*_*_*									
	0.00	*_*_*_*_*_*_*									
	1.00		1.00							Very loose brown sandy SILTY	
		*_*_*_*_*_*_*									
	2.00									Loose to firm greyish sandy silty	
			2.10							CLAY	
		*_*_*_*_*_*_*									
	3.00		3.00							Firm dark brown sandy silty CLAY	1
	4.00										
					_						
-	Statember der										
	5.00										
					-						
-	C 00		<i>v</i>	-	-	-					
	6.00	-				-					
	7 00										
	7.00										
	8.00										
	9.00										
	10.00										END OF BH
UD		=	Undist	urbed Sa	mple		*_*_*_*_*	= San	d		
N		=	SPT N-	Value				= Grav	/el		
D		=	Disturb	ed Sam	ple			= Silt			
								= Clay	1		
								= Dec	ompose	d Rock	

				IVIAI	ERIA	LSLA	DURA	UORI		
					RILLI	NGHO	DLE L	OG		
ECT	:	LOWER	SHIRE	ALLEY IR	RIGATIC	DN				
TION	:	CHIKW	AWA					SURVE	YED BY:	E. KACHAL
ND ELEV	<i>.</i> :	-						LOGGE	D BY:	J. MASEYA
ND WAT	ER LEV:	-						DATE:		3/22/201
HOLE N	0.:	21								
DEPTH		DEPTH	DEPTH	SAMPLE	NUMB	ER OF B	LOWS	SPT N	DESCRIPTION	
(m)	GRAPHIC	(m)	(m)	TYPE	IN	IN	IN	VALUE	OF	REMARKS
					150mm	150mm	150mm	300mm	MATERIAL	
0.00										
0.50										
		0.80							Very loose greyish sandy SILT	
1.00										
1.50										
2.00										
		2.20							firm brown sandy silty CLAY	END OF BH
2.50										
	-	Undistu	rbed Sa	ample		*_*_*_*_*	= San	d		
	-	SPT N-	/alue				= Gra	vel		
	=	Disturb	ed Sam	ple			= Silt			
							= Clay	y		
	ECT TION ND ELEV ND WAT HOLE N 0.00 0.50 0.50 1.50 2.00 2.50	ECT : TION : ND ELEV.: ND WATER LEV: HOLE NO.: DEPTH (m) GRAPHIC 0.00 0.50 0.50 1.00 1.50 2.00 2.50 = = = =	ECT : LOWER TION : CHIKW/ ND ELEV.: - ND WATER LEV: - HOLE NO.: 21 DEPTH DEPTH (m) GRAPHIC (m) 0.00 - - 0.50 - - 0.50 - - 0.50 - - 1.00 - - 1.00 - - 2.00 - - 2.100 - - 2.200 - - 2.50 = Undistu = SPT N-V -	ECT : LOWERSHIRE TION : CHIKWAWA ND ELEV.: - ND WATER LEV: - HOLE NO.: 21 DEPTH DEPTH (m) GRAPHIC 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.80 - 0.80 - 0.80 - 0.80 - 1.00 - 1.50 - 2.00 - 2.20 - 2.50 - = Undisturbed Same = Disturbed Same	ECT : LOWERSHIRE VALLEY IR TION : CHIKWAWA ND ELEV.: - - ND WATER LEV: - - HOLE NO.: 21 - DEPTH DEPTH DEPTH SAMPLE (m) GRAPHIC (m) (m) TYPE 0.00 - - - - 0.00 - - - - 0.00 - - - - 0.00 - - - - 0.00 - - - - 0.00 - - - - 0.00 - - - - 0.00 - - - - 0.100 - - - - 0.101 - - - - 1.00 - - - - 1.00 - - - - 1.00 - - - -	DRILLI ECT : LOWERSHIRE VALLEY IRRIGATION ION : CHIKWAWA ND ELEV.: - - ND WATER LEV: - - HOLE NO.: 21 - DEPTH DEPTH DEPTH SAMPLE (m) GRAPHIC (m) (m) TYPE 0.00 - - - 0.00 - - - 0.00 - - - 0.00 - - - 0.00 - - - - 0.00 - - - - 0.00 - - - - 0.10 - - - - 0.10 - - - - 0.10 - - - - 0.10 - - - - 0.10 - - - - 1.100 - - - - 1.100	ECT : LOWERSHIRE VALLEY IRRIGATION TION : CHIKWAWA ND ELEV: - ND WATER LEV: - HOLE NO.: 21 DEPTH DEPTH MO GRAPHIC (m) 0.00 - 0.00	ECT : LOWERSHIRE VALLEY IRRIGATION TION : CHIKWAWA ND ELEV.: - ND WATER LEV: - HOLE NO.: 21 DEPTH DEPTH MGRAPHIC (m) (m) GRAPHIC (m) (m) 0.50	DRILLING HOLE LOG ECT LOWERSHIRE VALLEY IRRIGATION TION CHIKWAWA SURVE ND ELEV: - LOGGE ND WATER LEV: - LOGGE HOLE NO.: 21 DEPTH DEPTH DEPTH SAMPLE NUMBER OF BLOWS SPT N (m) GRAPHIC (m) (m) TYPE IN IN IN VALUE 0.00 0.00 0.80 0 0 0 0 0 0 0.10 0.80 0 0 0 0 0 0 0 0 0.00 0.80 0	DRILLING HOLE LOG CT LOWERSHIRE VALLEY IRIGATION COM ISONE VALLEY IRIGATION SURVEYED BY: ND MATER LEV: - LOGGED BY: ND WATER LEV: - DATE: HOLE NO: 21 DATE: DEPTH DEPTH DEPTH SAMPLE NUMBER OF BLOWS SPTN DESCRIPTION (m) GRAPHIC (m) (m) TYPE IN IN IN VALUE OF 0.00

		MIN	IISTR	Y OF TF	RANS	PORT		PUBLI	C INFRASTRUCTURE	
					MAT	ERIAL	S LAE	BORAT	TORY	
					D	RILLIN	IG HO	LE LC)G	
PRO	JECT		LOWE	RSHIRE VA	ALLEY IR	RIGATIC	N			
LOC	ATION	:	CHIKW	AWA					SURVEYED BY:	E. KACHALE
GRO	UND ELE	V:	-						LOGGED BY:	J. MASEYA
GRO		TER LEV:							DATE:	3/24/2016
BOR	EHOLEI	NO.:	22							
ELEV	DEPTH		DEPTH	SAMPLE	NUMB	ER OF B	LOWS	SPT N	DESCRIPTION	
(m)	(m)	GRAPHIC	(m)	TYPE	IN	IN	IN	VALUE	OF	REMARKS
, í	. ,		. ,		150mm	150mm	150mm	300mm	MATERIAL	
	0.00									
									Loope darkich brown silty SAND	
									Loose darkish brown silty SAND	
		* * * * * * * *	0.62							
	1.00	* * * * * * *	0.03							-
	1.00	* * * * * * *								-
									Film light brown cond citly CLAY	
										-
			195							-
	2.00		1.00							
	2.00									-
<u> </u>		* * * * * * *								
		*_*_*_*_*_*_*								
	3.00	* * * * * * *	3.00	SPT	8	10	12	22	Firm dark brown silty SAND	END OF BH
					-					1
UD		=	Undist	urbed San	nple	*_*_*_*_*	= San	d		4
N		=	SPT N-	Value			= Gra	vel		
D		=	Disturt	ed Sampl	le	*****************	= Silt			
							= Clay	/		
							= Dec	ompose	d Rock	

		М	INISTE	RY OF '	TRAN	SPOR	Τ ΑΝΙ	D PUB	LIC INFRASTRUCTURE	
					MA	TERIA	LSL	ABOR	ATORY	
						DRILL	ING H	IOLE I	_OG	
PROJ	ECT		LOWER	RSHIRE V	ALLEY I	RRIGATI	ON			
LOCA	TION	:	CHIKW	AWA					SURVEYED BY:	E. KACHALE
GROU	IND ELE	V:	-						LOGGED BY:	J. MASEYA
GROU		TER LEV:	-						DATE:	3/22/201
BORE	HOLEN	10.:	23							
ELEV	DEPTH		DEPTH	SAMPLE	NUMB	ER OF B	LOWS	SPT N	DESCRIPTION	
(m)	(m)	GRAPHIC	(m)	TYPE	IN	IN	IN	VALUE	OF	REMARKS
					150mm	150mm	150mn	300mm	MATERIAL	
	0.00		0.25						Loose dark brown sandy silty CLAY	
			0.46						Firm dark brown sandy silty CLAY	
			0.88						Light Brown Sandy Silty CLAY	
				STP	3	3	4	7		+
	1.90									
		-	1.95						Light brown weathered BOCK	
										+
							-			
							-			-
		-								
							-			
			2.81	SPT	36	55++			highly weathered ROCK	
	3.00									1
	0.00									END OF BH
UD		=	Undistu	urbed Sa	mple	*_*_*_*	= Sar	nd		
N		=	SPT N-	Value			= Gra	vel		
D		=	Disturb	ed Samp	ole		= Silt			
							= Cla	У		
							= Dec	ompose	ed Rock	

		м	INISTF	RY OF 7	RANS	PORT	AND	PUBL	IC INFRASTRUCTURE	
					MAT	ERIA	LS LA	BORA	TORY	
					C	RILLI	NG HC	DLE LO	DG	
PRO	JECT		LOWER	SHIRE VA	ALLEY IR	RIGATIO	N			
LOC	ATION	:	CHIKW	AWA					SURVEYED BY:	E. KACHALE
GRO	JND ELE	EV:	-						LOGGED BY:	J. MASEYA
GRO	JND WA	ATER LEV:	-						DATE:	3/22/2016
BOR	EHOLE	NO.:	24							
ELEV	DEPTH		DEPTH	SAMPLE	NUMB	ER OF B	LOWS	SPT N	DESCRIPTION	
(m)	(m)	GRAPHIC	(m)	TYPE	IN	IN	IN	VALUE	OF	REMARKS
					150mm	150mm	150mm	300mm	MATERIAL	
	0.00		0.05							
	0.00		0.95						Very loose dark grey slity sandy CLAY	
			1.50	STP	3	3	4	7		
	1.90									
								-		
	2.00									
	2.00									
			2.60						Loose dark brown silty CLAY	
				<u> </u>						
	3.00		3.00	SPT	3	3	4	7		
									Loose light brown SILT	END OF BH
UD		-	Undistu	irbed San	nple	*_*_*_*_*	= San	d		
N		=	SPT N-	Value			= Grav	/el		
D		=	Disturb	ed Samp	le		= Silt			
							= Clay	1		
							= Dec	ompose	d Rock	

					REMARKS	COORDNATES																			
				.R.%	PACTION		98																		
				C.B	% COM		95																		
ORKS			AWA	γ	TION	O.M.C	%																		
LIC W	_TS		CHIKW	B.S HEAV	COMPAC	MDD	kg/m3																		
ID PUB	RESUI		ATION:		40	NOITSS	AD	A-2-7(1)	A-2-4(0)	A-1-a(0)	A-2-4(0)	A-2-4(0)		A-2-4(0)	A-2-6(0)	A-2-6(0)	A-2-4(0)	A-2-4(0)	A-1-b(0)	A-2-4(0)	A-2-6(0)	A-2-6(0)	A-2-4(0)	A-1-b(0)	A-1-b(0)
AN	EST		LOC/	RBERG	IITS		н. Н.	20	10	Ч	٩.	6		٩	15	10	Р	Р	Ъ	Ч	18	12	٩	٩	Ъ
ORI	ΥTI			ATTEF	LIN			41	20	z	z	21		z	29	23	z	z	z	z	28	26	z	z	z
VSP	OR			RIB	IZE (075 1	23	14	5	20	22		22	19	21	12	12	3	25	22	13	19	4	4
RA	RA			E DIST	EVE S		.150	25	18	7	29	32		30	24	27	17	13	5	32	29	17	27	19	7
НЦ	BO			SIZE	IS DI		.300	28	30	11	62	59		52	39	48	38	16	13	53	44	26	49	25	18
γ0	P			LICLE	ASSIN		.425	29	39	13	72	69		64	47	62	45	19	19	64	53	32	59	30	27
TR			NOI	PAR	% P.		.600	31	46	16	85	77		74	57	74	57	23	26	74	61	37	66	89	36
NIS		S	GAT				5 2.36	46	89	39	98	91		97	85	96	84	38	54	98	89	65	89	98	91
Σ		IOR	IRRI				4.75	61	97	61	 66	94	-	66 (92	66	92	53	63	100	95	77	96	66 (66 (
		N XS	LΕΥ		2		9.5	74	66 (96	66	95		100	67	66 (98	62	70		66 (79	66	100	100
		QN	VAL				13.2	3 79	100	66	 66	95			66	100	66	84	74		100	79	66		
		N A	IRE				5 19.0	8,		100	66	96			100		100	66	78			81	100		
		ASA	RSH				26.5	10(100	100		10		10		100	100			\$ 100	01	0	0
		KRC-D	LOWEI		DEPTH		(m)	0.00-0.30	0.30-2.35	2.35-2.65	0.00-0.40	0.40-1.30		0.00-0.75	0.75-1.90	1.90-3.25	3.25-3.47	3.47-5.20	5.20-6.47	0.00-0.50	0.50-1.97	1.97-2.96	2.96-5.22	5.22-5.50	5.50-6.50
		••	•••		SAMPLE		NO.	1	2	3	-	2		-	2	3	4	5	6	٢	2	3	4	5	9
		CLIENT	PROJECT		BOREHOLE	Q		7a			∀	59		1						2					

Appendix E. Test Results (Boreholes)

							Σ	NIS	TR	jo Jo	H II	AN	ISP	ORT	A	ND PUB		ORKS			
										LAE	3OF	RAT	OR	ΥTE	EST	RESUL	TS				
CLIENT	••	KRC-D	ASA	N AN	20	Ж W	ORK	S													
PROJECT	••	LOWER	SHI	IRE \	/ALI	LΕΥ	RRIC	GAT	NO						LOC	ATION:	CHIKW	AWA			
									PART	ICLE	SIZE	DIST	RIB /	ATTER	BER	5	B.S HEAV	۲	C.E	3.R. %	
BOREHOLE	SAMPLE	DEPTH							% PA	SSIN	G SIE	VE S	IZE (LIN	IITS	CLASSIFIC	COMPAC	TION	% CON	IPACTION	REMARKS
Q											_					ATION	MDD	O.M.C			COORDNATES
	NO.	(m)	26.5	19.0	13.2	9.5	4.75	2.36	.600	.425	300	150	075 L	L F	.I.		kg/m3	%	95	98	
3	٢	0.00-0.20	100	66	96	95	89	82	65	58	48	21	13	z	Ъ	A-2-4(0)					
	2	0.20-0.55	100	98	95	93	88	82	64	56	47	28	20	z	Ч	A-2-4(0)					
	3	0.55-1.25		100	91	89	82	77	62	57	48	32	26	32	19	A-2-6(0)					
	4	1.25-1.45	100	77	74	72	70	66	54	50	44	29	23	z	Ч	A-1-b(0)					
7	5	1.45-2.68			100	66	91	81	52	45	35	24	18	27	14	A-2-6(0)					
70	9	2.68-5.45	100	74	63	45	16	4	2	2	2	2	2	z	Ъ	A-1-b(0)					
	7	5.45-6.25	100	98	98	97	95	91	72	62	50	25	17	z	٩	A-2-4(0)					
	8	6.25-7.50		100	66	96	88	77	50	42	31	14	7	z	٩	A-2-4(0)					
	6	7.50-8.75		100	98	96	90	77	37	30	22	10	9	z	٩	A-1-b(0)					
	10	8.75-9.70	100	95	93	92	85	72	30	23	17	7	4	z	Ч	A-1-b(0)					
4	1	0.00-0.64	100	96	91	86	79	71	55	46	34	20	15	z	٩	A-1-b(0)					
	2	0.64-0.95	100	95	93	92	87	81	66	57	56	24	18	z	٩	A-2-4(0)					
	з	0.95-1.75	100	94	89	89	88	85	68	62	50	29	21	z	٦	A-2-4(0)					
	4	1.75-3.02	100	94	91	89	87	80	61	54	48	28	19	31	11	A-2-6(0)					
5	1	0.00-0.85	100	83	82	80	77	72	55	49	42	26	19	z	٩	A-1-b(0)					
	2	0.85-2.82			100	66	98	95	78	69	58	31	24	z	٩	A-2-4(0)					
	ю	2.82-3.45				100	98	96	85	78	65	37	30	z	٩	A-2-4(0)					

							Σ	NIS	TR	<u>ک</u>	Η	AN	ISP	ORI	A	ND PUBI		ORKS			
										P	BOF	ZAT	OR	ΥT	EST	RESUL	TS				
CLIENT	•••	KRC-D	ASA	NA	DON	N X	ORM	S													
PROJECT	•••	LOWEF	SH	IRE	VAL	Ľ	IRRI	GAT	NO				-		LOC	ATION:	CHIKW	AWA			
									PAR	LICLE	SIZE	DIST	RIB	ATTEF	RBER	U U	B.S HEAV	7	C.B	.R.%	
BOREHOLE	SAMPLE	DEPTH							% P.	ASSIN	IG SIE	EVE S	IZE (L	AITS	CLASSIFIC	COMPAC	lion	% COM	PACTION	REMARKS
Q																ATION	MDD	O.M.C			COORDNATES
	NO.	(m)	26.5	5 19.0	13.2	9.5	4.75	2.36	.600	.425	.300	.150 .	075 L	Ļ	Р.І.		kg/m3	%	95	98	
9	1	0.00-0.61	100	96 (96	96	94	92	82	75	65	34	25	z	٩	A-2-4(0)					
	2	0.61-1.90			10(98	95	91	75	66	48	29	24	30	13	A-2-6(0)					
	3	1.90-2.56		100	98	95	90	84	68	61	52	29	21	22	9	A-2-4(0)					
	4	2.56-3.45	100	66	66	98	96	87	81	99	32	28	23	20	11	A-2-6(0)					
-																					
² 71	1	0.00-0.82		100	66	97	88	78	58	51	43	27	17	18	7	A-2-4(0)					
	2	0.82-1.37		100	66	98	92	83	58	53	44	28	21	26	13	A-2-6(0)					
	3	1.37-2.00	100	81	79	79	76	73	59	55	48	30	22	24	5	A-2-4(0)					
	4	2.00-3.45	100	64	63	61	55	50	38	34	29	17	12	28	8	A-2-4(0)					
6	1	0.00-0.54				100	197	95	89	85	78	52	41	35	16	A-6(2)					
	2	054-1.99	C		10(66 (93	83	65	61	56	41	34	42	22	A-2-7(2)					
	3	1.99-3.00			10(66 (95	87	64	56	47	28	22	37	15	A-2-6(0)					

							Σ	NIS	TR	NO X	Ë.	AN	ISP	ORT	A	ND PUBI	LIC V	ORKS			
										P	30F	ZAT	OR	ΥTE	S	- RESUL	TS.				
CLIENT	••	KRC-D/	ASA	NA		N X	ORK	S													
PROJECT	••	LOWER	IHS	RE \	/ALI	LΕΥ	IRRI	GAT	NO						8	ATION:	CHIKW	AWA			
									PART	ICLE	SIZE	DIST	RIB /	ATTER	BER	5	B.S HEAN	۲	C.E	i.R. %	
BOREHOLE	SAMPLE	DEPTH							% P.	VISSIN	G SIE	S IN	IZE (LIM	ITS	CLASSIFIC	COMPAC	TION	% CON	IPACTION	REMARKS
N																ATION	DDD	O.M.C			COORDNATES
	NO.	(m)	26.5	19.0	13.2	9.5	4.75	2.36	.600	.425	.300	150	075 L	L P			kg/m3	%	95	98	
12	1	0.00-0.41			100	66	98	96	82	75	65	38	28	z	Ъ	A-2-4(0)					
	2	0.41-0.52	100	90	88	82	71	65	58	39	34	26	21	32	12	A-2-6(0)					
	3	0.52-0.85	100	92	87	83	69	63	60	46	41	29	25	38	21	A-2-6(1)					
	4	0.85-1.35	100	93	89	84	71	62	59	48	40	35	30	41	8	A-2-5(0)					
	5	1.35-2.80	100	97	96	93	85	71	39	34	29	20	15	Z	Р	A-1-b(0)					
233	٢	0.00-0.63				100	66	98	88	84	76	52	42	36	24	A-6(1)					
	2	0.63-1.80	100	98	96	93	90	83	78	59	48	39	30	29	14	A-2-6(1)					
	ю	1.80-3.20	100	66	66	98	97	96	86	76	63	37	25	z	٩	A-2-4(0)					
14	٢	0.00-0.30			100	100	98	95	86	82	76	53	41	30	11	A-6(0)					
	2	0.30-060		100	94	91	80	69	56	51	45	32	26	16	7	A-2-4(0)					
	з	0.60-2.30	100	6	84	29	73	66	51	46	39	24	19	23	10	A-2-4(0)					
15	٢	0.00-0.30	100	6	89	86	75	63	59	52	41	34	29	30	15	A-2-6(1)					
	2	0.30-2.50	100	91	6	81	70	65	58	47	39	33	26	32	16	A-2-6(1)					
	3	2.50-3.45			100	98	93	86	68	61	51	35	28	35	14	A-2-6(1)					
16	۲	0.00-0.78		100	66	98	96	95	94	91	85	62	52	34	23	A-6(8)					
	2	0.78-1.30				100	66	98	97	93	86	58	47	35	16	A-6(5)					
	з	1.30-2.70					100	66	98	95	89	51	40	z	٩	A-4(0)					
	4	2.70-3.45			100	66	96	94	91	70	47	23	17	z	٩	A-2-4(0)					

							Σ	NIS	TR	Q	Ħ	AN	ISP(ORT	Ā	ND PUB	LIC V	ORKS			
										LAE	30F	RAT	OR	ΥTE	EST	RESUL	TS				
CLIENT	••	KRC-D	ASA	NA	D O	Ν	ORK	S													
PROJECT	••	LOWEF	SHI	RE	/ALL	Έ	IRRIG	GAT	NO					_	LOC	ATION:	CHIKW	AWA			
									PART	ICLE	SIZE	DIST	RIB /	ATTER	BER	5	B.S HEA	7	C.E	i.R. %	
BOREHOLE	SAMPLE	E DEPTH							% PA	SSIN	G SIE	VE S	ZE (LIN	IITS	CLASSIFIC	COMPAC	TION	% CON	IPACTION	REMARKS
QN																ATION	MDD	O.M.C			COORDNATES
	NO.	(m)	26.5	19.0	13.2	9.5	4.75	2.36	.600	.425	300	150	075 L	.L			kg/m3	%	95	98	
18	1	0.00-015	100	89	83	70	63	49	40	34	26	19	19	z	Ъ	A-1-b(0)					
	2	0.15-0.30					100	66	97	91	88	55	44	27	11	A6(2)					
	3	0.30-0.70					100	66	97	95	90	62	50	28	15	A-6(4)					
	4	0.70-2.90				100	66	66	96	94	91	65	53	38	19	A-6(7)					
	5	2.90-3.00				100	66	98	97	96	94	67	55	50	23	A7-6(8)					
73	9	3.00-6.45			100	98	96	90	86	80	65	57	49	49	25	A-7-6(8)					
8																					
22	1	0.00-0.63				100	95	90	86	63	45	23	16	z	٦	A-2-4(0)					
	2	0.62-195						100	86	73	59	42	36	29	21	A-6(2)					
	3	1.95-3.00					100	98	70	55	39	24	19	z	٩	A-2-4(0)					
23	٢	0.00-0.25	100	96	96	95	93	91	77	73	67	51	42	29	13	A-6(2)					
	2	0.25-0.46	100	93	90	85	76	71	64	59	55	46	38	41	23	A-2-6(4)					
	ю	0.46-0.88	100	95	95	94	89	84	59	55	50	43	38	35	14	A-6(2)					
	4	0.88-1.38			100	66	96	91	52	46	41	31	24	26	13	A-2-6(0)					
	5	1.38-1.95	100	85	77	73	99	61	42	38	34	27	22	z	٦	A-1-b(0)					
	9	1.95-2.35	100	92	90	88	80	65	21	17	14	8	9	z	٩	A-1-b(0)					
24	1	0.00-0.95						100	97	95	91	83	79	z	٩	A-4(0)					
	2	.95-2.60						100	97	94	89	79	73	39	18	A-6(10)					
	ю	2.60-3.00					100	66	96	94	89	65	55	34	18	A-6(6)					

					REMARKS	COORDNATES																					
				.R. %	IPACTION		98					25					33					65					40
				C.B	% CON		95					23					24					48					28
ORKS			AWA	٨	TION	O.M.C	%					9.4					11.9					10.9					10.7
	TS		CHIKW	B.S HEAV	COMPAC	MDD	kg/m3					1980					1962					2065					1995
ID PUBI	RESUL		ATION:		CLASSIFIC	ATION		A-2-4(0)	A-2-6(2)	A-2-6(1)	A-2-6(3)	A-2-6(2)	A-2-7(1)	A-2-6-(0)	A-2-6(1)	A-2-6(0)	A-6(5)	A-2-4(0)	A-1-b(0)	A-2-6(0)	A-2-6(0)	A-2-6(2)	A-2-6(1)	A-2-4(0)	A-2-4(0)	A-2-6(1)	A-2-6(0)
AN	EST		LOC/	RBERG	IITS (i.	15	17	17	23	18	 25	17	17	12	24	7	Р	15	14	22	29	10	6	24	16
ORI	ΥT			ATTEF	LIN			31	33	34	40	36	46	36	38	29	45	30	z	30	28	39	 44	39	42	40	30
VSP	TOR			rrib	IZE (_	.075 L	31	30	24	36	35	20	16	23	21	40	18	13	25	24	27	20	18	18	19	17
RA	RA			E DIST	EVE S		.150	34	32	29	42	48	23	20	28	26	49	19	17	30	26	30	23	22	22	25	29
Н	BO			SIZI	IG SI		.300	38	36	29	47	48	29	30	37	42	58	26	23	37	30	32	30	31	31	34	23
Υ0	P			LICLE	ASSI		.425	49	47	42	64	63	 31	34	42	47	89	28	26	40	35	36	35	34	34	38	28
TR			NO	PAR	% P.		.600	51	48	52	68	69	34	37	45	52	74	35	28	49	38	41	39	38	38	43	35
NIS		S	GAT			_	5 2.36	74	71	72	83	85	52	54	63	73	82	46	43	56	46	49	50	62	62	63	40
Σ		/ORI	IRRI				4.75	86	85	84	90	91	 72	61	77	82	89	52	55	61	53	57	 68	76	76	79	41
		N XS	LΕΥ				9.5	93	92	93	96	98	 87	81	87	60	93	65	67	70	64	68	 76	89	89	86	66
		QN	VAL				13.2	95	96	95	66	66 (92	86	91	94	94	71	73	80	76	78	89	93	93	87	77
		N A	IRE				5 19.0	0 95	0 97	0 95	96 0	100	 94	0 91	94	95	96	86	73	84	89	88	90	96	96	89	82
		ASP	RSH				26.	10(10(10(10(100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
		KRC-D	LOWEI		DEPTH		(m)																				
		•••	••		SAMPLE		NO.	1	2	3	4	MIXED 5	1	2	3	4	MIXED 5	1	2	3	4	MIXED 5	1	2	3	4	MIXED 5
		CLIENT	PROJECT		BOREHOLE	N		CHIKHAMBA	B/PIT				OKOKO	B/PIT				KALUMPHA	B/PIT				NAMACHA	B/PIT			

Appendix F. Gravel Test Results

							Ī	NIS.	ΓRΥ	P	TR	AN	SPC	JRT	AN	D PUBL		ORKS			
										AE	NOR	AT	OR)	E L	ST	RESUL	TS				
CLIENT	••	KRC-D	ASA	N AN	D G	Ň	ORK	S													
PROJECT	••	LOWEF	IHSS	RE \	/ALI	ĒYI	RRIC	BATI	NO					_	OC A	VTION:	CHIKW	AWA			
									PART	CLE	SIZE	DIST	RIB A	TTER	BERG		B.S HEAV	۲	C.B	.R.%	
BOREHOLE	SAMPLE	DEPTH							% PA	SSING	SIE	VE SI.	ZE (LIM	ITS C	LASSIFIC	COMPAC	NOI	% COM	PACTION	REMARKS
Q														_		ATION	MDD	O.M.C			COORDNATES
	NO.	(m)	26.5	19.0	13.2	9.5	4.75	2.36	.600	425	300	150 .0	175 L.	-			kg/m3	%	95	98	
TOMALI	1		100	78	67	58	39	30	18	16	14	6	9	33	10	A-2-4(0)					
B/PIT	2		100	97	93	89	80	66	52	49	46	36	30	25	13	A-2-6(1)					
	3		100	89	82	71	59	46	39	32	24	18	15	30	9	A-2-4(0)					
	4		100	66	97	94	81	62	38	34	31	23	19	31	14	A-2-6(0)					
	MIXED 5		100	79	70	54	28	15	8	7	7	5	3	35	21	A-2-6(0)	2030	10.4	60	76	
																				~ ~ ~	
MAAIKA	٢		100	88	85	77	64	48	34	32	30	25	22 4	42	25	A-2-7(1)					
B/PIT	2		1000	94	91	82	66	50	34	33	31	28	25 4	48	24	A-2-7(1)					
	3		100	85	76	67	51	40	28	26	25	21	18 4	45	22	A-2-7(0)					
	4		100	89	80	80	59	43	31	29	28	26	22	26	17	A-2-6(0)					
	MIXED 5		100	94	85	78	63	44	35	34	33	30	27 4	49	26	A-2-7(2)	1925	12.8	25	36	
SIBAHE	٢		100	89	89	84	39	16	8	7	9	5	5	z	Р	A-1-a(0)					
B/PIT	2			100	97	60	64	47	21	18	14	6	9	z	Ъ	A-1-a(0)					
	з		100	89	89	84	73	54	20	17	14	11	6	z	۵	A-1-a(0)					
	4		100	89	78	72	62	52	28	24	19	13	6	z	٩	A-1-a(0)					
	MIXED 5		100	79	73	68	56	39	30	26	19	14	11	z	٩	A-1-a(0)	2025	9.2	40	56	
NYAMITHUTHU	-		100	60	73	53	21	5	з	0	0	0	0	z	٩	A-1-a(0)					
B/PIT	2		100	91	73	57	41	40	39	38	32	24	15	33	10	A-1-a(0)					
	З		100	94	81	75	50	28	6	8	9	5	4	z	٩	A-1-a(0)					
	4		100	98	96	6	68	36	10	ი	8	7	9	z	٩	A-1-a(0)					
	MIXED 5		100	78	69	48	39	35	30	24	23	19	18	27	6	A-1-a(0)	2090	8.4	34	48	
Appendix G. Borehole Unit Weight & NMC

	MINISTRY OF TRANSPORT	& PUBLIC WORKS		
	CENTRAL MATERIAL L	ABORATORY		
	BH - NMC & UNIT WE	EIGHT TEST		
BH NO	DESCRPTION		NMC %	UNIT WEGHT
				
BH 1	Dark brown sandy silty CLAY	AA 126.96g - 115.0	10.4	1017g/mm ³
BH 2	Dark brown sandy silty CLAY	24=176.57-162.0	9.0	1115g/mm ³
BH 3	Dark brown silty clay SAND	RR=202.65-175.0	15.8	147.5g/mm ³
BH 4	Dark brown sandy silty CLAY	уоу 985g-903g	9.1	180.4g/mm ³
BH 5	Light brown silty CLAY	kk 890-815g	<u> </u>	1630g/mm ³
BH 6	Light brown silty CLAY	f 920-835g	9.2	1170g/mm ³
BH 7	Quartz gravel feeder canal	top 970g-902g	7.5	1804g/m ³
BH 9	Light brown sandy silty CLAY	to 172-165	4.2	1079g/mm ³
BH 12	Light gravel (no unit weight)			
BH 13	Light brown sandy silty CLAY	MDD 850g - 765g	5.5	1122g/mm ³
BH 14	Dark brown sandy silty CLAY	PT 401-380		94.0g/mm ³
BH 15	Light brown decomposed	KT 595-550G	8.2	1054g/m³
	ROCK			
BH 16	Dark brown sandy silty CLAY	LL 500-444	12.6	1035g/m ³
BH 18	Light brown clayey sand SILT	BB 520-489	6.3	1078g/m ³
BH 22	Light brown clayey SILT	CL 920-865g	6.4	1114g/m ³
BH 23	Light brown decomposed	KK 1105-945g	16.9	1908g/m³
BH 24	Dark brown sandy SILTY	TI 631-552g	14.4	1103g/m ³
BHA	Loose dark brown clayey sitly SAND	LLK 12g -111g	8.1	1304g/m ³
BH 7a	Loose dark grey micaceous decomposed ROCK	NO UNIT WEIGHT		-

Appendix H. Auguring, Unit Weight & NMC

SHIRE VALLEY IRRIGATION AUGURING NMC & UNIT WEIGHT TEST

BH NO	DESCRPTION	AUGURING	NMC %	UNIT WEGHT
BH 5a	No auguring because rock & No unit weight			
BH 8	No Auguring because rock	MP 306.8-279g	9.9	
BH 10	Loose sandy brown sandy SILT	PK 530-495	7.1	1140g/mm³
BH 11	Loose greyish brown SAND	DD 525g-470g	13.8	1420g/mm³
BH 17	Very loose greyish brown sandy clayey SILT	BL 585-535	9.3	1192g/mm³
BH 19	No Auguring (ROCK)			
BH 20	Very loose brown sandy SILT	BG 450-402	11.9	1200g/mm ³
BH 21	Very loose greyish sandy SILT	KA 631g -560g	12.7	1420g/mm³
BH 16a	Loose dark brown sandy SILT	BT 97.17-89.1g	9.1	1181g/mm³

						Σ	NIST	RY	P P	H	AN	SPC	RT	AND F	UBLI	O MOI	RKS		
									AB AB	OR	AT	SR	Ë	ST RE	SULT	S			
CLIENT		DASAN	×	QR A	GN	X	NOR	e e						ALIGER	UNIC				
PROJECT		SHIRE	VALI	LEY	RRIC	3ATI	NO	2					2	CATION		CHIKW.	AWA		
ВН							Å	ARTIC	LES	IZ D	ISTR	BUA	TTER	BERG		TEST			
PIT	SAMPLE	DEPTH					%	PAS	SING	SIEV	E SIZ	Э Ш	LIMI		TRIXIAL	/BOX SHE	EAR		REMARKS
											<u> </u>			ICATION	BULK				COORDNATES
															DENS	M/C	ပ	÷	
N	NO.	(m)	19.0	13.2	9.5	4.75	2.36	.600	425	300	150.0	75 L.	L P.I.		kg/m3	%	KN/M2	0	
5a	NO AI	ugering (F	ROCK	(
8	NO AI	ugering (F	ROCK	(
10		0.00-0.40	63	51	44	39	36	27	21	18	16 1	3 N	Ч	A-1-a(0)					
		0.40-1.65		100	87	83	79	66	58	53 4	42 3	6 3	0 15	A-2-6(2)					
		1.65-3.00		100	84	79	74	63	57	50 4	41 3	5 2	8 14	A-2-6(1)					
11		0.00-0.95	100	56	43	39	31	23	18	17	15 1	3 N	Ч	A-1-a(0)					
		0.95-1.84	100	58	53	47	40	32	30	29	24 2	A L	Ч	A-1-a(0)					
		1.84-3.00	100	90	88	82	74	69	61	56 4	47 4	0 3	8 19	A-2-6(0)					
17		0.00-3.0	100	57	44	37	30	22	19	18	16	3	<u>а</u>	A-1-a(0)					
16a		0.00-1.1	85	58	45	39	33	29	26	22	19	8	Ч.	A-1-a(0)					
		1.10-2.1	84	81	73	64	59	56	50	48 4	13	17 3.	4 17	A-2-6(3)					
20		0.00-1.00	67	54	46	40	36	30	29	23	2	7 7	<u>а</u>	A-1-a(0)					
		1.00-2.10	89	81	73	69	61	50	43	39	33 2	9 2	8 13	A-2-6(1)					
		210-3.00	87	82	75	71	59	53	45	41	39	32 3	30 15	5 A-2-6(1)					
											_		_						

Appendix I. Auguring Test Results

					REMARKS	COORDNATES											
							ф	0									
SKS			AWA		AR		U	KN/M2									
C WOF	S		CHIKW	TEST	/BOX SHE		M/C	%									
UBLI	SULT	IJС			TRIXIAL	BULK	DENS	kg/m3									
AND P	ST RE	AUGER	SATION:	ERG	CLASSIF	ICATION			A-1-a(0)	A-2-6(3)							
21	Ш		LOC	ERB	-IMI-			P.I.	Р	16							
ō	ž			AT				L.L	Ν	32							
NSI	ō			r RIBU	IZE (.075	13	38							
RA	RA			DISI	S IN S			.150	17	41							
н	BO			SIZE	G SIE			.300	21	52		1					
0	P			CLE	SSIN			.425	27	59		7					
IR		KS		ARTI	% PA			.600	33	63							
<u>-SIN</u>		NOR	NOI	4				2.36	39	71							
Σ		SK/	BATI					4.75	46	78							
		 Q	RRIC					9.5	52	84							
		CR A	ΈYΙ					13.2	65	89							
		& X	/ALI					19.0	69	100	JG	8					
		DASAN	SHIRE \		DEPTH			(m)	0.00-0.80	1.50-2.20	AUGERIN						
		••	••		SAMPLE			NO.)		NO						
		CLIENT	PROJECT	ВН	PIT			N	21	83	19						

Appendix J. Permeability Test Results

Permeability (Fa	lling Hea	ad) Test					
Date:	5/25	5/2016	Name:	LOWER	SHIRE VA	LLEY IRRIGATI	ON
No.	P/	T - 1	Depth:		0.0m -	1.0m	
Glass Tube: Inside dia	meter =	8	Cross Section A	rea, a =		50.3	cm ²
Sample a	nd Mould		Condit	ion of Specime	n	Before Test	After Test
Diamotor	cm		Weight of Sp	ecimen and	a		
Diameter	CIII	10.2	Moule	d, M _a	Б	3562	3763
	2		Weight of Spe	cimen, M=	_		
Cross-section Area, A	cm ⁻	81.7	M _a -	m _m	g	1727	1928
Length, L	cm	11.6	Wet Density,	ρ _t =	g/cm ³	1822	2034
Volume, V=A*L	cm ³	0.948	Moisture C	ontent, ω	%	10.7	25.5
	-		Dry Density,	ρ _d =	, 3		
weight of mould	g	1835	ρ _t /(1+o	ω/100)	g/cm	1646	1621
Soil Specific Gravity	Gs	2.478	Void R	atio, e		0.506	0.529
			Degree of Sa	turation Sr	%	52.4	119 5
						52.1	115.5
		1	2	3			
Start time, t ₁	sec	8:00:00 AM	8:49:29 AM	10:02:45 AM			
End time, t ₂	sec	8:49:29 AM	10:02:45 AM	12:28:18 PM			
Measuring Period	sec	2969	4396	8733			
Difference of Head	cm	100	100	100			
Head of Water t_1 , h_1	cm	158	158	158			
Head of Water t_2 , h_2	cm	58	58	58			
Coefficient of	cm/soc						
Permeability, k	city sec	2.41E-03	1.62E-03	8.18E-04			
k in average, k _m	cm/sec		1.62E-03				

Permeability (Fa	lling Hea	ad) Test					
Date:	6/5	/2016	Name:	LOWER	SHIRE VAL	LEY IRRIGATI	ON
No.	P/	T-2	Depth:		0.0m -	1.0m	
Glass Tube: Inside dia	meter =	8	Cross Section Ar	ea, a =		50.3	cm ²
Sample a	nd Mould		Condit	ion of Specime	า	Before Test	After Test
Diameter	cm	10.5	Weight of Sp Mould	ecimen and I, Ma	g	3605	3752
Cross-section Area, A	cm ²	86.6	Weight of Spec M _a -	cimen, M = m _m	g	1800	1947
Length, L	cm	11.5	Wet Density,	ρ _t =	g/cm ³	1899	2054
Volume, V=A*L	cm ³	0.996	Moisture C	ontent, ω	%	12.4	22.4
Weight of mould	g	1805	Dry Density,	ρ _d =	g/cm ³	1689	1678
Soil Specific Gravity	Gs	2.256	Void Ra	atio. e		0.467	0.477
			Degree of Sa	Ratio, e Saturation, Sr %		65.8	116.5
			-				
		1	2	3			
Start time, t ₁	sec	7:30:00 AM	9:54:30 AM	12:44:27 PM			
End time, t ₂	sec	9:54:30 AM	12:44:27 PM	2:57:08 PM			
Measuring Period	sec	8670	10197	7961			
Difference of Head	cm	100	100	100			
Head of Water t_1 , h_1	cm	158	158	158			
Head of Water t_2 , h_2	cm	58	58	58			
Coefficient of Permeability, k	cm/sec	8.24E-04	7.01E-04	8.97E-04			
k in average, k _m	cm/sec		8.07E-04				

Permeability (Fa	lling Hea	d) Test					
Date:	6/	4/2016	Name:	LOWER	SHIRE VAI	LLEY IRRIGATI	ON
No.	F	P/T - 3	Depth:		0.0m -	1.0m	
Glass Tube: Inside dia	meter =	8	Cross Section Ar	ea, a =		50.3	cm ²
Sample	and Mould		Condit	ion of Specime	n	Before Test	After Test
Diamatar	6772		Weight of Sp	ecimen and	~		
Diameter	un	10.3	Mould	l, Ma	g	3415	3591
	2		Weight of Spec	cimen, M =	_		
Cross-section Area, A	cm	83.3	M _a -	m _m	g	1590	1766
Length, L	cm	11.6	Wet Density,	ρ _t =	g/cm ³	1677	1863
Volume, V=A*L	cm ³	0.967	Moisture C	ontent, ω	%	16.2	28.9
			Dry Density,	ρ _d =	, 3		
weight of mould	g	1825	ρ _t /(1+c	ω/100)	g/cm	1444	1445
Soil Specific Gravity	Gs	2.287	Void Ra	atio, e		0.717	0.714
			Degree of Sa	turation, Sr	%	56.0	100.2
		1	2	3			
Start time, t ₁	sec	8:00:00 AM	8:55:13 AM	10:03:12 AM			
End time, t ₂	sec	8:55:13 AM	10:03:12 AM	11:25:52 AM			
Measuring Period	sec	3313	4079	4960			
Difference of Head	cm	100	100	100			
Head of Water t_1 , h_1	cm	158	158	158			
Head of Water t_2 , h_2	cm	58	58	58			
Coefficient of	cm/soc						
Permeability, k	unysec	2.16E-03	1.75E-03	1.44E-03			
k in average, k _m	cm/sec		1.78E-03				

Permeability (Fa	lling Hea	d) Test					
Date:	6/	2/2016	Name:	LOWER	SHIRE VA	LLEY IRRIGATI	ON
No.	F	P/T - 4	Depth:		0.0m -	1.0m	
-							
Glass Tube: Inside dia	meter =	8	Cross Section A	ea, a =		50.3	cm ²
Sample	and Mould		Condit	ion of Specime	n	Before Test	After Test
			Weight of Sp	ecimen and			
Diameter	ст	10.2	Moule	d, Ma	g	3698	3875
	2		Weight of Spe	cimen, M=			
Cross-section Area, A	cm ²	81.7	M _a -	m _m	g	1818	1995
Length, L	cm	11.5	Wet Density,	ρ _t =	g/cm ³	1918	2105
Volume, V=A*L	cm ³	0.940	Moisture C	ontent, ω	%	9.2	15.2
			Dry Density,	ρ _d =	, 3		
Weight of mould	g	1880	ρ _t /(1+o	ω/100)	g/cm°	1756	1827
Soil Specific Gravity	Gs	2.431	Void R	atio, e		0.411	0.356
			Degree of Sa	turation, Sr	%	55.5	105.7
		1	2	3			
Start time, t_1	sec	8:00:00 AM	11:08:55 AM	1:45:43 PM			
End time, t ₂	sec	11:08:55 AM	1:45:43 PM	3:53:43 PM			
Measuring Period	sec	11335	9408	7680			
Difference of Head	cm	100	100	100			
Head of Water t_1 , h_1	cm	158	158	158			
Head of Water t_2 , h_2	cm	58	58	58			
Coefficient of	cm/soc						
Permeability, k	CITI/Sec	6.30E-04	7.59E-04	9.30E-04			
k in average, k _m	cm/sec		7.73E-04				

Permeability (Fa	lling Hea	ad) Test					
Date:	5/2	27/2016	Name:	LOWER	SHIRE VA	LLEY IRRIGATI	ON
No.	F	P/T - 5	Depth:		0.0m -	1.0m	
Glass Tube: Inside dia	meter =	8	Cross Section A	rea, a =		50.3	cm ²
Sample	and Mould	ł	Condit	ion of Specime	n	Before Test	After Test
Diameter	cm	10.3	Weight of Sp Moule	ecimen and d, M _a	g	3357	3565
Cross-section Area, A	cm ²	83.3	Weight of Spec M _a -	cimen, M = m _m	g	1537	1745
Length, L	cm	11.5	Wet Density,	ρ _t =	g/cm ³	1622	1841
Volume, V=A*L	cm ³	0.958	Moisture C	ontent, ω	%	17.3	34.3
Weight of mould	g	1820	Dry Density, ρ _t /(1+α	ρ _d = ω/100)	g/cm ³	1382	1371
Soil Specific Gravity	Gs	2.25	Void R	atio, e		0.793	0.808
			Degree of Sa	turation, Sr	%	54.1	105.2
		1	2	3			
Start time, t ₁	sec	8:30:00 AM	12:01:33 PM	3:43:53 PM			
End time, t ₂	sec	12:01:33 PM	3:43:53 PM	6:29:23 PM			
Measuring Period	sec	12693	13340	9930			
Difference of Head	cm	100	100	100			
Head of Water t ₁ , h ₁	cm	158	158	158			
Head of Water t_2 , h_2	cm	58	58	58			
Coefficient of Permeability, k	cm/sec	5.63E-04	5.35E-04	7.19E-04			
k in average, k _m	cm/sec		6.06E-04				

____ /Fallir

Permeability (Fa	lling Hea	nd) Test					
Date:	5/2	26/2016	Name:	LOWER	SHIRE VAI	LEY IRRIGATI	ON
No.	F	Р/Т-6	Depth:		0.0m -	1.0m	4
Glass Tube: Inside dia	meter =	8	Cross Section A	ea, a =		50.3	cm ²
Sample	and Mould	1	Condit	ion of Specime	n	Before Test	After Test
Diamotor	cm		Weight of Sp	ecimen and	a		
Diameter	CIII	10.2	Moule	d, M _a	Б	3271	3555
	2		Weight of Spe	cimen, M=			
Cross-section Area, A	cm	81.7	M _a -	m _m	g	1391	1675
Length, L	cm	11.5	Wet Density,	ρ _t =	g/cm ³	1468	1767
Volume, V=A*L	cm ³	0.940	Moisture C	ontent, ω	%	11.2	41.1
			Dry Density,	ρ _d =	, 3		
Weight of mould	g	1820	ρ _t /(1+c	ω/100)	g/cm°	1320	1252
Soil Specific Gravity	Gs	2.25	Void R	atio, e		0.878	0.979
			Degree of Sa	turation, Sr	%	31.6	104.1
		1	2	3			
Start time, t_1	sec	8:30:00 AM	1:26:35 PM	3:02:59 PM			
End time, t ₂	sec	1:26:35 PM	3:02:59 PM	4:53:00 PM			
Measuring Period	sec	17795	5784	6601			
Difference of Head	cm	100	100	100			
Head of Water t ₁ , h ₁	cm	158	158	158			
Head of Water t ₂ , h ₂	cm	58	58	58			
Coefficient of							
Permeability, k	cm/sec	4.01E-04	1.23E-03	1.08E-03			
k in average, k _m	cm/sec		9.06E-04				

Permeability (Fa	lling Hea	ad) Test					
Date:	5/2	29/2016	Name:	LOWER	SHIRE VAI	LLEY IRRIGATI	ON
No.	F	P/T - 7	Depth:		0.0m -	1.0m	
Glass Tube: Inside dia	meter =	8	Cross Section Ar	ea, a =		50.3	cm ²
Sample	and Mould	1	Condit	ion of Specime	n	Before Test	After Test
Diameter	cm	10.2	Weight of Sp Mould	ecimen and I, M _a	g	3344	3564
Cross-section Area, A	cm ²	81.7	Weight of Spec M _a -	cimen, M= m _m	g	1494	1714
Length, L	cm	11.6	Wet Density,	ρ _t =	g/cm ³	1576	1808
Volume, V=A*L	cm ³	0.948	Moisture C	ontent, ω	%	11.6	47.7
Weight of mould	g	1805	Dry Density, ρ _t /(1+α	ρ _d = ω/100)	g/cm ³	1412	1224
Soil Specific Gravity	Gs	2.371	Void Ra	atio, e		0.755	1.024
			Degree of Sa	turation, Sr	%	38.1	115.4
		1	2	3			
Start time, t ₁	sec	8:00:00 AM	11:10:13 AM	12:45:43 PM			
End time, t ₂	sec	11:10:13 AM	12:45:43 PM	2:48:43 PM			
Measuring Period	sec	11413	5730	7380			
Difference of Head	cm	100	100	100			
Head of Water t_1 , h_1	cm	158	158	158			
Head of Water t ₂ , h ₂	cm	58	58	58			
Coefficient of Permeability, k	cm/sec	6.26E-04	1.25E-03	9.68E-04			
k in average, k _m	cm/sec		9.47E-04				

Permeability (Fa	lling Hea	nd) Test					
Date:	5/3	30/2016	Name:	LOWER	SHIRE VA	LLEY IRRIGATI	ON
No.	F	P/T-8	Depth:		0.0m -	- 1.0m	
Glass Tube: Inside dia	meter =	8	Cross Section A	rea, a =	<u> </u>	50.3	cm ²
Sample	and Mould	1	Condit	ion of Specime	n	Before Test	After Test
Diameter	cm	10.33	Weight of Sp Moule	ecimen and d, Ma	g	3296	3600
Cross-section Area, A	cm ²	83.8	Weight of Spec M _a -	cimen, M = m _m	g	1471	1775
Length, L	cm	11.6	Wet Density,	ρ _t =	g/cm ³	1552	1873
Volume, V=A*L	cm ³	0.972	Moisture C	Content, ω	%	12.2	34.5
Weight of mould	g	1825	Dry Density, p,/(1+)	ρ _d = ω/100)	g/cm ³	1383	1392
Soil Specific Gravity	Gs	2.36	Void R	atio, e		0.792	0.780
			Degree of Sa	turation, Sr	%	38.2	109.6
		1	2	3			
Start time, t ₁	sec	8:00:00 AM	10:09:48 AM	12:32:34 PM			
End time, t ₂	sec	10:09:48 AM	12:32:34 PM	2:50:54 PM			
Measuring Period	sec	7788	8566	8300			
Difference of Head	cm	100	100	100			
Head of Water t_1 , h_1	cm	158	158	158			
Head of Water t_2 , h_2	cm	58	58	58			
Coefficient of Permeability, k	cm/sec	9.17E-04	8.34E-04	8.61E-04			
k in average, k _m	cm/sec		8.71E-04				

Permeability (Fa	lling Hea	d) Test					
Date:	6/	3/2016	Name:	LOWER	SHIRE VAI	LLEY IRRIGATI	ON
No.	F	P/T-9	Depth:		0.0m - 1.0m		
Glass Tube: Inside dia	meter =	8	Cross Section A	ea, a =		50.3	cm ²
Sample	and Mould		Condit	ion of Specime	n	Before Test	After Test
Diameter	cm		Weight of Sp	ecimen and	a		
Diameter	CIII	10.3	Moulo	l, M _a	б	3551	3740
Cross sostion Area A	2		Weight of Spe	cimen, M =	~		
Cross-section Area, A	cm ⁻	83.3	M _a -	m _m	g	1731	1920
Length, L	cm	11.5	Wet Density,	ρ _t =	g/cm ³	1826	2026
Volume, V=A*L	cm ³	0.958	Moisture C	ontent, ω	%	11.4	29.2
Weight of mould			Dry Density,	ρ _d =	, 3		
	g	1820	ρ _t /(1+o	ω/100)	g/cm°	1639	1568
Soil Specific Gravity	Gs	2.329	Void Ratio, e			0.512	0.581
			Degree of Sa	turation, Sr	%	55.2	124.6
		1	2	3			
Start time, t ₁	sec	7:30:00	10:11:26	13:40:17			
End time, t ₂	sec	10:11:26	13:40:17	14:43:29			
Measuring Period	sec	9686	12531	3792			
Difference of Head	cm	100	100	100			
Head of Water t_1 , h_1	cm	158	158	158			
Head of Water t ₂ , h ₂	cm	58	58	58			
Coefficient of	om / c o o						
Permeability, k	cmysec	7.37E-04	5.70E-04	1.88E-03			
k in average, k _m	cm/sec		1.06E-03				

Permeability (Fa	lling Hea	d) Test					
Date:	5/2	24/2016	Name:	LOWER	SHIRE VAI	LEY IRRIGATI	ON
No.	Р	/T - 10	Depth:		0.0m - 1.0m		
Glass Tube: Inside dia	meter =	8	Cross Section Ar	ea, a =		50.3	cm ²
Sample	and Mould		Condit	ion of Specime	<u>n</u>	Before Test	After Test
Diameter	cm	10.5	Weight of Specimen and Mould, Ma		g	3656	3831
Cross-section Area, A	cm ²	86.6	Weight of Spec M _a -	Weight of Specimen, M = M _a - m _m		1741	1916
Length, L	cm	11.6	Wet Density,	ρ _t =	g/cm ³	1837	2021
Volume, V=A*L	cm ³	1.004	Moisture C	ontent, ω	%	10.4	19.1
Weight of mould	g	1915	Dry Density, $\rho_d = \rho_t/(1 + \omega/100)$		g/cm ³	1664	1697
Soil Specific Gravity	Gs	2.42	Void Ratio, e			0.489	0.460
			Degree of Sa	turation, Sr	%	52.7	102.9
		1	2	3			
Start time, t ₁	sec	8:00:00 AM	9:18:52 AM	12:04:18 PM			
End time, t ₂	sec	9:18:52 AM	12:04:18 PM	1:48:54 PM			
Measuring Period	sec	4732	9926	6276			
Difference of Head	cm	100	100	100			
Head of Water t_1 , h_1	cm	158	158	158			
Head of Water t ₂ , h ₂	cm	58	58	58			
Coefficient of Permeability, k	cm/sec	1.51E-03	7.20E-04	1.14E-03			
к in average, k _m	cm/sec		1.12E-03				

Permeability (Fa	lling Hea	d) Test					
Date:	201	16-15-23	Name:	LOWER	SHIRE VAI	LLEY IRRIGATI	ON
No.	Р	/T - 11	Depth:	0.0m - 1.0m			
Glass Tube: Inside dia	meter =	8	Cross Section Area, a =			50.3	cm ²
Sample	and Mould	1	Condit	ion of Specime	n	Before Test	After Test
Diamotor	cm		Weight of Sp	ecimen and	a		
Diameter	CIII	10.3	Mould	d, Ma	Б	3529	3663
	2		Weight of Spec	cimen, M =			
Cross-section Area, A	cm⁻	83.3	M _a -	m _m	g	1704	1838
Length, L	cm	11.6	Wet Density,	ρ _t =	g/cm ³	1798	1939
Volume, V=A*L	cm ³	0.967	Moisture C	ontent, ω	%	18	29.2
Weight of mould			Dry Density, ρ _d =		, 3		
	g	1825	ρ _t /(1+c	ω/100)	g/cm°	1523	1501
Soil Specific Gravity	Gs	2.069	Void Ratio, e			0.627	0.651
			Degree of Sa	turation, Sr	%	71.2	111.1
		1	2	3			
Start time, t ₁	sec	8:00:00 AM	9:55:56 AM	12:18:18 PM			
End time, t ₂	sec	9:55:53 AM	12:18:18 PM	2:16:01 PM			
Measuring Period	sec	6953	8542	7063			
Difference of Head	cm	100	100	100			
Head of Water t_1 , h_1	cm	158	158	158			
Head of Water t_2 , h_2	cm	58	58	58			
Coefficient of	cm/soc						
Permeability, k	cillysec	1.03E-03	8.36E-04	1.01E-03			
k in average, k _m	cm/sec		9.58E-04				

Permeability (Fa	lling Hea	d) Test					
Date:	5/2	20/2016	Name:	LOWER	SHIRE VA	LLEY IRRIGATI	ON
No.	Р	/T - 12	Depth:		0.0m - 1.0m		
Glass Tube: Inside dia	meter =	8	Cross Section Ar	ea, a =		50.3	cm ²
Sample	and Mould		Condit	ion of Specime	n	Before Test	After Test
Diameter	cm	10.3	Weight of Specimen and Mould, M_a		g	3679	3708
Cross-section Area, A	cm ²	83.3	Weight of Spec M _a -	cimen, M= m _m	g	1859	1888
Length, L	cm	11.5	Wet Density,	ρ _t =	g/cm ³	1961	1992
Volume, V=A*L	cm ³	0.958	Moisture C	ontent, ω	%	20.4	30.6
Weight of mould	g	1820	Dry Density, ρ _t /(1+α	ρ _d = ω/100)	g/cm ³	1629	1525
Soil Specific Gravity	Gs	2.299	Void Ratio, e			0.521	0.625
			Degree of Sa	turation, Sr	%	97.0	121.4
		1	2	3			
Start time, t_1	sec	8:00:00	9:06:18	10:46:28			
End time, t ₂	sec	9:06:18	10:46:28	13:01:28			
Measuring Period	sec	3978	6010	8100			
Difference of Head	cm	100	100	100			
Head of Water t ₁ , h ₁	cm	158	158	158			
Head of Water t ₂ , h ₂	cm	58	58	58			
Coefficient of Permeability, k	cm/sec	1.80E-03	1.19E-03	8.82E-04			
k in average, k _m	cm/sec		1.29E-03				

Permeability (Fa	lling Hea	ad) Test					
Date:	6/	7/2016	Name:	LOWER	SHIRE VAI	LLEY IRRIGATI	ON
No.	Р	/T - 13	Depth:	oth: 0.0m - 1.0m			
Class Tuber Inside die		0	Cross Sastian A.			F0 2	cm ²
Glass Tube: Inside dia	meter =	<u>ہ</u>	Cross Section Al	'ed, d = ion of Specime		50.3	
Sample		4 [ion of specime	n	before test	After fest
Diameter	cm	10.2	Weight of Sp Moule	ecimen and d, M _a	g	3316	3493
Cross-section Area, A	cm ²	81.7	Weight of Spe Ma -	cimen, M = m _m	g	1466	1643
Length, L	cm	11.6	Wet Density,	ρ _t =	g/cm ³	1547	1733
Volume, V=A*L	cm ³	0.948	Moisture C	ontent, ω	%	16.3	39.9
Weight of mould			Dry Density,	ρ _d =	. 3		
	g	1850	ρ _t /(1+	ω/100)	g/cm°	1330	1239
Soil Specific Gravity	Gs	2.179	Void Ratio, e			0.863	1.000
			Degree of Sa	turation, Sr	%	46.8	98.9
		1	2	3			
Start time, t ₁	sec	7:30:00	8:59:23	10:22:26			
End time, t ₂	sec	8:59:23	10:22:26	12:26:16		4983	
Measuring Period	sec	5363	4983	7430			
Difference of Head	cm	100	100	100			
Head of Water t_1 , h_1	cm	158	158	158			
Head of Water t ₂ , h ₂	cm	58	58	58			
Coefficient of Permeability, k	cm/sec	1.33E-03	1.43E-03	9.61E-04			
k in average, k _m	cm/sec		1.24E-03				

Permeability (Fa	lling Hea	nd) Test					
Date:	5/2	28/2016	Name:	LOWER	SHIRE VAI	LLEY IRRIGATI	ON
No.	P	/T -14	Depth:	0.0m - 1.0m			
							2
Glass Tube: Inside dia	meter =	8	Cross Section Ar	ea, a =		50.3	cm ⁻
Sample	and Mould	1	Condit	ion of Specime	n	Before Test	After Test
Diameter	cm	10.2	Weight of Specimen and Mould, M _a		g	3191	3613
Cross-section Area, A	cm ²	81.7	Weight of Spec Ma -	cimen, M = m _m	g	1386	1808
Length, L	cm	11.6	Wet Density,	ρ _t =	g/cm ³	1462	1907
Volume, V=A*L	cm ³	0.948	Moisture C	ontent, ω	%	16.9	29.7
Weight of mould	g	1850	Dry Density, ρ,/(1+α	ρ _d = ω/100)	g/cm ³	1251	1471
Soil Specific Gravity	Gs	2.098	Void Ratio, e			0.981	0.685
			Degree of Sa	turation, Sr	%	42.7	107.4
		1	2	3			
Start time, t_1	sec	8:30:00 AM	11:51:51 AM	3:04:32 PM			
End time, t ₂	sec	11:51:51 AM	3:04:32 PM	6:16:07 PM			
Measuring Period	sec	12111	11561	11495			
Difference of Head	cm	100	100	100			
Head of Water t_1 , h_1	cm	158	158	158			
Head of Water t_2 , h_2	cm	58	58	58			
Coefficient of Permeability, k	cm/sec	5.90E-04	6.18E-04	6.21E-04			
k in average, k _m	cm/sec		6.10E-04				

Permeability (Fa	lling Hea	d) Test					
Date:	5/2	21/2016	Name:	LOWER	SHIRE VAI	LEY IRRIGATI	ON
No.	Р	/T - 15	Depth:	Depth: 0.0m			
Glass Tube: Inside dia	meter =	8	Cross Section Ar	ea, a =		50.3	cm ²
Sample	and Mould		Condit	ion of Specime	n	Before Test	After Test
Diameter	er cm 10.5 Mould M		g				
		10.5	Mould	d, M _a		3648	3779
Cross-section Area. A	cm ²		Weight of Spee	cimen, M =	g		
		86.6	M _a -	m _m	0	1733	1864
Length, L	cm	11.6	Wet Density,	ρ _t =	g/cm ³	1828	1967
Volume, V=A*L	cm ³	1.004	Moisture C	ontent, ω	%	15.5	26.9
Weight of mould	_		Dry Density,	Dry Density, $\rho_d =$			
	б	1915	ρ _t /(1+c	ω/100)	g/cm°	1583	1550
Soil Specific Gravity	Gs	2.193	Void Ratio, e			0.565	0.599
			Degree of Sa	turation, Sr	%	67.9	111.3
		1	2	3			
Start time, t ₁	sec	8:00:00 AM	9:40:51 AM	11:25:09 AM			
End time, t ₂	sec	9:40:51 AM	11:25:09 AM	1:03:59 PM			
Measuring Period	sec	6051	6258	5930			
Difference of Head	cm	100	100	100			
Head of Water t_1 , h_1	cm	158	158	158			
Head of Water t_2 , h_2	cm	58	58	58			
Coefficient of	am lass						
Permeability, k	cm/sec	1.18E-03	1.14E-03	1.20E-03			
k in average, k _m	cm/sec		1.18E-03				

Permeability (Fa	lling Hea	nd) Test					
Date:	5/2	21/2016	Name:	LOWER	SHIRE VA	LLEY IRRIGATI	ON
No.	Р	/T - 16	Depth:	0.0m - 1.0m			
-							
Glass Tube: Inside dia	meter =	8	Cross Section A	rea, a =		50.3	cm ²
Sample	and Mould	1	Condit	ion of Specime	n	Before Test	After Test
Diamotor	cm		Weight of Sp	ecimen and	a		
Diameter	CIII	10.2	Mould, M _a		Б	3493	3678
	2		Weight of Spe	cimen, M =			
Cross-section Area, A	cm	81.7	M _a -	m _m	g	1643	1828
Length, L	cm	11.6	Wet Density,	ρ _t =	g/cm ³	1733	1929
Volume, V=A*L	cm ³	0.948	Moisture C	ontent, ω	%	13.4	25.9
			Dry Density,	ρ _d =	, 3		
Weight of mould	g	1850	ρ _t /(1+o	ω/100)	g/cm°	1529	1532
Soil Specific Gravity	Gs	2.379	Void Ratio, e			0.621	0.618
			Degree of Sa	turation, Sr	%	53.5	103.9
		1	2	3			
Start time, t ₁	sec	8:00:00 AM	10:33:11 AM	12:58:15 PM			
End time, t ₂	sec	10:33:11 AM	12:58:15 PM	3:26:36 PM			
Measuring Period	sec	9191	8704	8901			
Difference of Head	cm	100	100	100			
Head of Water t_1 , h_1	cm	158	158	158			
Head of Water t_2 , h_2	cm	58	58	58			
Coefficient of	cm/soc						
Permeability, k	cill/sec	7.77E-04	8.21E-04	8.02E-04			
k in average, k _m	cm/sec		8.00E-04				

Permeability (Fa	lling Hea	d) Test					
Date:	6/	1/2016	Name:	LOWER	SHIRE VAI	LEY IRRIGATI	ON
No.	Р	/T - 17	Depth:		0.0m - 1.0m		
Glass Tube: Inside dia	meter =	8	Cross Section A	rea, a =		50.3	cm ²
Sample	and Mould		Condit	ion of Specime	<u>n</u>	Before Test	After Test
Diameter	cm	10 5	Weight of Sp	Weight of Specimen and Mould. Ma		2260	2502
		10.5				3300	3332
Cross-section Area, A	cm ²	86.6	M _a -	n _m	g	1445	1677
Length, L	cm	11.6	Wet Density,	ρ _t =	g/cm ³	1524	1769
Volume, V=A*L	cm ³	1.004	Moisture C	ontent, ω	%	16.7	39.6
Weight of mould	_		Dry Density,	ρ _d =	, 3		
	g	1915	ρ _t /(1+o	ω/100)	g/cm°	1306	1267
Soil Specific Gravity	Gs	2.33	Void Ratio, e			0.897	0.955
			Degree of Sa	turation, Sr	%	46.1	102.7
		1	2	3			
Start time, t ₁	sec	8:00:00	10:20:39	12:36:59			
End time, t ₂	sec	10:20:39	12:36:57	14:47:45			
Measuring Period	sec	8439	8178	7846			
Difference of Head	cm	100	100	100			
Head of Water t ₁ , h ₁	cm	158	158	158			
Head of Water t ₂ , h ₂	cm	58	58	58			
Coefficient of Permeability, k	cm/sec	8.46E-04	8.73E-04	9.10E-04			
k in average, k _m	cm/sec		8.77E-04				

Permeability (Fa	lling Hea	ad) Test					
Date:	5/2	22/2016	Name:	LOWER	SHIRE VAI	LEY IRRIGATI	ON
No.	Р	/T - 18	Depth:		0.0m -	1.0m	
							2
Glass Tube: Inside dia	meter =	8	Cross Section A	rea, a =		50.3	cm²
Sample	and Mould	1	Condit	ion of Specime	n	Before Test	After Test
Diameter	cm	10.5	Weight of Specimen and Mould, M _a		g	3691	3818
Cross-section Area, A	cm ²	86.6	Weight of Spec M _a -	cimen, M = m _m	g	1886	2018
Length, L	cm	11.5	Wet Density,	ρ _t =	g/cm ³	1990	2129
Volume, V=A*L	cm ³	0.996	Moisture C	ontent, ω	%	10.8	20
Weight of mould	g	1805	Dry Density, ρ _t /(1+α	ρ _d = ω/100)	g/cm ³	1796	1774
Soil Specific Gravity	Gs	2.304	Void Ratio, e			0.380	0.397
			Degree of Sa	turation, Sr	%	70.4	124.9
-		1	2	3			
Start time, t ₁	sec	8:00:00 AM	9:28:32 AM	12:20:54 PM			
End time, t ₂	sec	9:28:32 AM	12:20:54 PM	1:04:25 PM			
Measuring Period	sec	5312	10342	2611			
Difference of Head	cm	100	100	100			
Head of Water t_1 , h_1	cm	158	158	158			
Head of Water t ₂ , h ₂	cm	58	58	58			
Coefficient of Permeability, k	cm/sec	1.34E-03	6.91E-04	2.74E-03			
k in average, k _m	cm/sec		1.59E-03				

Permeability (Fa	lling Hea	nd) Test						
Date:	5/3	31/2016	Name:	LOWER	SHIRE VAL	LEY IRRIGATI	ON	
No.	Р	/T - 19	- 19 Depth:			0.0m - 1.0m		
Glass Tube: Inside dia	meter =	8	Cross Section A	ea, a =		50.3	cm ²	
Sample	and Mould	1	Condit	ion of Specime	n	Before Test	After Test	
Diamatar	0.00		Weight of Sp	ecimen and	_			
Diameter	cm	10.2	Moule	d, Ma	g	3560	3716	
Cross sostion Area A	2		Weight of Spee	cimen, M =	~			
Cross-section Area, A	cm	81.7	M _a -	- m _m		1725	1881	
Length, L	cm	11.6	Wet Density,	ρ t =	g/cm ³	1820	1984	
Volume, V=A*L	cm ³	0.948	Moisture C	ontent, ω	%	11	22	
Mainha a famandal	_		Dry Density,	ρ _d =	, 3			
Weight of mould	g	1835	ρ _t /(1+o	ω /100)	g/cm	1640	1627	
Soil Specific Gravity	Gs	2.552	Void Ra	atio, e		0.511	0.523	
			Degree of Sa	turation, Sr	%	53.3	104.2	
		1	2	3				
Start time, t ₁	sec	7:30:00	9:42:42	12:03:15				
End time, t ₂	sec	9:42:42	12:03:15	14:14:45				
Measuring Period	sec	7962	8433	7890				
Difference of Head	cm	100	100	100				
Head of Water t_1 , h_1	cm	158	158	158				
Head of Water t_2 , h_2	cm	58	58	58				
Coefficient of	cm/soc							
Permeability, k	cilly sec	8.97E-04	8.47E-04	9.05E-04				
k in average, k _m	cm/sec		8.83E-04					

Permeability (Fa	lling Hea	d) Test						
Date:	6/	6/2016	Name:	LOWER	LOWER SHIRE VALLEY IRRIGATION			
No.	Р	/T - 20	Depth:		0.0m - 1.0m			
Glass Tube: Inside dia	meter =	8	Cross Section Ar	ea, a =		50.3	cm ²	
Sample	and Mould	l	Condit	ion of Specime	n	Before Test	After Test	
Diamotor	cm		Weight of Sp	ecimen and	a			
Diameter	CIII	10.2	Moulo	d, M _a		3440	3680	
	2		Weight of Spec	cimen, M =				
Cross-section Area, A	cm ⁻	81.7	M _a -	M _a - m _m		1605	1845	
Length, L	cm	11.6	Wet Density,	ρ _t =	g/cm ³	1693	1946	
Volume, V=A*L	cm ³	0.948	Moisture C	ontent, ω	%	12.2	27.7	
Weight of mould			Dry Density, $\rho_d =$, 3			
	g	1835	ρ _t /(1+o	ω/100)	g/cm°	1509	1524	
Soil Specific Gravity	Gs	2.264	Void Ratio, e			0.642	0.626	
			Degree of Sa	turation, Sr	%	47.1	109.7	
		1	2	3				
Start time, t_1	sec	7:30:00 AM	9:22:33 AM	11:05:03 AM				
End time, t ₂	sec	9:22:33 AM	11:05:03 AM	12:37:18 PM				
Measuring Period	sec	6753	6150	5535				
Difference of Head	cm	100	100	100				
Head of Water t_1 , h_1	cm	158	158	158				
Head of Water t_2 , h_2	cm	58	58	58				
Coefficient of	am laa a							
Permeability, k	cm/sec	1.06E-03	1.16E-03	1.29E-03				
k in average, k _m	cm/sec		1.17E-03					

Appendix K. Location Picture

Appendix L. Field Pictures

Appendix M. Lab Pictures

